Cargando…

Complex pectin metabolism by gut bacteria reveals novel catalytic functions

Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally co...

Descripción completa

Detalles Bibliográficos
Autores principales: Ndeh, Didier, Rogowski, Artur, Cartmell, Alan, Luis, Ana S., Baslé, Arnaud, Gray, Joseph, Venditto, Immacolata, Briggs, Jonathon, Zhang, Xiaoyang, Labourel, Aurore, Terrapon, Nicolas, Buffetto, Fanny, Nepogodiev, Sergey, Xiao, Yao, Field, Robert A., Zhu, Yanping, O’Neil, Malcolm A., Urbanowicz, Breeana R., York, William S., Davies, Gideon J., Abbott, D. Wade, Ralet, Marie-Christine, Martens, Eric C., Henrissat, Bernard, Gilbert, Harry J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388186/
https://www.ncbi.nlm.nih.gov/pubmed/28329766
http://dx.doi.org/10.1038/nature21725
Descripción
Sumario:Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet.