Cargando…
Sequential Monte Carlo-guided ensemble tracking
A great deal of robustness is allowed when visual tracking is considered as a classification problem. This paper combines a finite number of weak classifiers in a SMC framework as a strong classifier. The time-varying ensemble parameters (confidence of weak classifiers) are regarded as sequential ar...
Autores principales: | Wang, Yuru, Liu, Qiaoyuan, Jiang, Longkui, Yin, Minghao, Wang, Shengsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388463/ https://www.ncbi.nlm.nih.gov/pubmed/28399149 http://dx.doi.org/10.1371/journal.pone.0173297 |
Ejemplares similares
-
Optimal Appearance Model for Visual Tracking
por: Wang, Yuru, et al.
Publicado: (2016) -
Sequential Monte Carlo with transformations
por: Everitt, Richard G., et al.
Publicado: (2019) -
Neural Decoding Using a Parallel Sequential Monte Carlo Method on Point Processes with Ensemble Effect
por: Xu, Kai, et al.
Publicado: (2014) -
An introduction to sequential Monte Carlo
por: Chopin, Nicolas, et al.
Publicado: (2020) -
Robust Scale Adaptive Tracking by Combining Correlation Filters with Sequential Monte Carlo
por: Ma, Junkai, et al.
Publicado: (2017)