Cargando…
A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388534/ https://www.ncbi.nlm.nih.gov/pubmed/28397687 http://dx.doi.org/10.7554/eLife.22706 |
_version_ | 1782521143547133952 |
---|---|
author | Sandoval, Imelda T Delacruz, Richard Glenn C Miller, Braden N Hill, Shauna Olson, Kristofor A Gabriel, Ana E Boyd, Kevin Satterfield, Christeena Van Remmen, Holly Rutter, Jared Jones, David A |
author_facet | Sandoval, Imelda T Delacruz, Richard Glenn C Miller, Braden N Hill, Shauna Olson, Kristofor A Gabriel, Ana E Boyd, Kevin Satterfield, Christeena Van Remmen, Holly Rutter, Jared Jones, David A |
author_sort | Sandoval, Imelda T |
collection | PubMed |
description | Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas. Utilizing zebrafish to examine the genetic relationship between MPC1 and Adenomatous polyposis coli (APC), a key tumor suppressor in colorectal cancer, we found that apc controls the levels of mpc1 and that knock down of mpc1 recapitulates phenotypes of impaired apc function including failed intestinal differentiation. Exogenous human MPC1 RNA rescued failed intestinal differentiation in zebrafish models of apc deficiency. Our data demonstrate a novel role for apc in pyruvate metabolism and that pyruvate metabolism dictates intestinal cell fate and differentiation decisions downstream of apc. DOI: http://dx.doi.org/10.7554/eLife.22706.001 |
format | Online Article Text |
id | pubmed-5388534 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53885342017-04-14 A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) Sandoval, Imelda T Delacruz, Richard Glenn C Miller, Braden N Hill, Shauna Olson, Kristofor A Gabriel, Ana E Boyd, Kevin Satterfield, Christeena Van Remmen, Holly Rutter, Jared Jones, David A eLife Cancer Biology Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas. Utilizing zebrafish to examine the genetic relationship between MPC1 and Adenomatous polyposis coli (APC), a key tumor suppressor in colorectal cancer, we found that apc controls the levels of mpc1 and that knock down of mpc1 recapitulates phenotypes of impaired apc function including failed intestinal differentiation. Exogenous human MPC1 RNA rescued failed intestinal differentiation in zebrafish models of apc deficiency. Our data demonstrate a novel role for apc in pyruvate metabolism and that pyruvate metabolism dictates intestinal cell fate and differentiation decisions downstream of apc. DOI: http://dx.doi.org/10.7554/eLife.22706.001 eLife Sciences Publications, Ltd 2017-04-11 /pmc/articles/PMC5388534/ /pubmed/28397687 http://dx.doi.org/10.7554/eLife.22706 Text en © 2017, Sandoval et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cancer Biology Sandoval, Imelda T Delacruz, Richard Glenn C Miller, Braden N Hill, Shauna Olson, Kristofor A Gabriel, Ana E Boyd, Kevin Satterfield, Christeena Van Remmen, Holly Rutter, Jared Jones, David A A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title | A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title_full | A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title_fullStr | A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title_full_unstemmed | A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title_short | A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) |
title_sort | metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (apc) |
topic | Cancer Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388534/ https://www.ncbi.nlm.nih.gov/pubmed/28397687 http://dx.doi.org/10.7554/eLife.22706 |
work_keys_str_mv | AT sandovalimeldat ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT delacruzrichardglennc ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT millerbradenn ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT hillshauna ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT olsonkristofora ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT gabrielanae ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT boydkevin ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT satterfieldchristeena ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT vanremmenholly ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT rutterjared ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT jonesdavida ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT sandovalimeldat metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT delacruzrichardglennc metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT millerbradenn metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT hillshauna metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT olsonkristofora metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT gabrielanae metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT boydkevin metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT satterfieldchristeena metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT vanremmenholly metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT rutterjared metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc AT jonesdavida metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc |