Cargando…

A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)

Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandoval, Imelda T, Delacruz, Richard Glenn C, Miller, Braden N, Hill, Shauna, Olson, Kristofor A, Gabriel, Ana E, Boyd, Kevin, Satterfield, Christeena, Van Remmen, Holly, Rutter, Jared, Jones, David A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388534/
https://www.ncbi.nlm.nih.gov/pubmed/28397687
http://dx.doi.org/10.7554/eLife.22706
_version_ 1782521143547133952
author Sandoval, Imelda T
Delacruz, Richard Glenn C
Miller, Braden N
Hill, Shauna
Olson, Kristofor A
Gabriel, Ana E
Boyd, Kevin
Satterfield, Christeena
Van Remmen, Holly
Rutter, Jared
Jones, David A
author_facet Sandoval, Imelda T
Delacruz, Richard Glenn C
Miller, Braden N
Hill, Shauna
Olson, Kristofor A
Gabriel, Ana E
Boyd, Kevin
Satterfield, Christeena
Van Remmen, Holly
Rutter, Jared
Jones, David A
author_sort Sandoval, Imelda T
collection PubMed
description Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas. Utilizing zebrafish to examine the genetic relationship between MPC1 and Adenomatous polyposis coli (APC), a key tumor suppressor in colorectal cancer, we found that apc controls the levels of mpc1 and that knock down of mpc1 recapitulates phenotypes of impaired apc function including failed intestinal differentiation. Exogenous human MPC1 RNA rescued failed intestinal differentiation in zebrafish models of apc deficiency. Our data demonstrate a novel role for apc in pyruvate metabolism and that pyruvate metabolism dictates intestinal cell fate and differentiation decisions downstream of apc. DOI: http://dx.doi.org/10.7554/eLife.22706.001
format Online
Article
Text
id pubmed-5388534
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-53885342017-04-14 A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC) Sandoval, Imelda T Delacruz, Richard Glenn C Miller, Braden N Hill, Shauna Olson, Kristofor A Gabriel, Ana E Boyd, Kevin Satterfield, Christeena Van Remmen, Holly Rutter, Jared Jones, David A eLife Cancer Biology Elucidating signaling pathways that regulate cellular metabolism is essential for a better understanding of normal development and tumorigenesis. Recent studies have shown that mitochondrial pyruvate carrier 1 (MPC1), a crucial player in pyruvate metabolism, is downregulated in colon adenocarcinomas. Utilizing zebrafish to examine the genetic relationship between MPC1 and Adenomatous polyposis coli (APC), a key tumor suppressor in colorectal cancer, we found that apc controls the levels of mpc1 and that knock down of mpc1 recapitulates phenotypes of impaired apc function including failed intestinal differentiation. Exogenous human MPC1 RNA rescued failed intestinal differentiation in zebrafish models of apc deficiency. Our data demonstrate a novel role for apc in pyruvate metabolism and that pyruvate metabolism dictates intestinal cell fate and differentiation decisions downstream of apc. DOI: http://dx.doi.org/10.7554/eLife.22706.001 eLife Sciences Publications, Ltd 2017-04-11 /pmc/articles/PMC5388534/ /pubmed/28397687 http://dx.doi.org/10.7554/eLife.22706 Text en © 2017, Sandoval et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cancer Biology
Sandoval, Imelda T
Delacruz, Richard Glenn C
Miller, Braden N
Hill, Shauna
Olson, Kristofor A
Gabriel, Ana E
Boyd, Kevin
Satterfield, Christeena
Van Remmen, Holly
Rutter, Jared
Jones, David A
A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title_full A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title_fullStr A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title_full_unstemmed A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title_short A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC)
title_sort metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (apc)
topic Cancer Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388534/
https://www.ncbi.nlm.nih.gov/pubmed/28397687
http://dx.doi.org/10.7554/eLife.22706
work_keys_str_mv AT sandovalimeldat ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT delacruzrichardglennc ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT millerbradenn ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT hillshauna ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT olsonkristofora ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT gabrielanae ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT boydkevin ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT satterfieldchristeena ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT vanremmenholly ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT rutterjared ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT jonesdavida ametabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT sandovalimeldat metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT delacruzrichardglennc metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT millerbradenn metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT hillshauna metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT olsonkristofora metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT gabrielanae metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT boydkevin metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT satterfieldchristeena metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT vanremmenholly metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT rutterjared metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc
AT jonesdavida metabolicswitchcontrolsintestinaldifferentiationdownstreamofadenomatouspolyposiscoliapc