Cargando…

Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex

To study the response properties of cells that could participate in eye-hand coordination we trained two macaque monkeys to perform center-out saccades and pointing movements with their right or left forelimb toward visual targets presented on a video display. We analyzed the phasic movement related...

Descripción completa

Detalles Bibliográficos
Autores principales: Neromyliotis, Eleftherios, Moschovakis, A. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388740/
https://www.ncbi.nlm.nih.gov/pubmed/28446867
http://dx.doi.org/10.3389/fnbeh.2017.00061
_version_ 1782521168444522496
author Neromyliotis, Eleftherios
Moschovakis, A. K.
author_facet Neromyliotis, Eleftherios
Moschovakis, A. K.
author_sort Neromyliotis, Eleftherios
collection PubMed
description To study the response properties of cells that could participate in eye-hand coordination we trained two macaque monkeys to perform center-out saccades and pointing movements with their right or left forelimb toward visual targets presented on a video display. We analyzed the phasic movement related discharges of neurons of the periarcuate cortex that fire before and during saccades and movements of the hand whether accompanied by movements of the other effector or not. Because such cells could encode an abstract form of the desired displacement vector without regard to the effector that would execute the movement we refer to such cells as motor equivalence neurons (Meq). Most of them (75%) were found in or near the smooth pursuit region and the grasp related region in the caudal bank of the arcuate sulcus. The onset of their phasic discharges preceded saccades by about 70 ms and hand movements by about 150 ms and was often correlated to both the onset of saccades and the onset of hand movements. The on-direction of Meq cells was uniformly distributed without preference for ipsiversive or contraversive movements. In about half of the Meq cells the preferred direction for saccades was the preferred direction for hand movements as well. In the remaining cells the difference was considerable (>90 deg), and the on-direction for eye-hand movements resembled that for isolated saccades in some cells and for isolated hand movements in others. A three layer neural network model that used Meq cells as its input layer showed that the combination of effector invariant discharges with non-invariant discharges could help reduce the number of decoding errors when the network attempts to compute the correct movement metrics of the right effector.
format Online
Article
Text
id pubmed-5388740
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-53887402017-04-26 Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex Neromyliotis, Eleftherios Moschovakis, A. K. Front Behav Neurosci Neuroscience To study the response properties of cells that could participate in eye-hand coordination we trained two macaque monkeys to perform center-out saccades and pointing movements with their right or left forelimb toward visual targets presented on a video display. We analyzed the phasic movement related discharges of neurons of the periarcuate cortex that fire before and during saccades and movements of the hand whether accompanied by movements of the other effector or not. Because such cells could encode an abstract form of the desired displacement vector without regard to the effector that would execute the movement we refer to such cells as motor equivalence neurons (Meq). Most of them (75%) were found in or near the smooth pursuit region and the grasp related region in the caudal bank of the arcuate sulcus. The onset of their phasic discharges preceded saccades by about 70 ms and hand movements by about 150 ms and was often correlated to both the onset of saccades and the onset of hand movements. The on-direction of Meq cells was uniformly distributed without preference for ipsiversive or contraversive movements. In about half of the Meq cells the preferred direction for saccades was the preferred direction for hand movements as well. In the remaining cells the difference was considerable (>90 deg), and the on-direction for eye-hand movements resembled that for isolated saccades in some cells and for isolated hand movements in others. A three layer neural network model that used Meq cells as its input layer showed that the combination of effector invariant discharges with non-invariant discharges could help reduce the number of decoding errors when the network attempts to compute the correct movement metrics of the right effector. Frontiers Media S.A. 2017-04-12 /pmc/articles/PMC5388740/ /pubmed/28446867 http://dx.doi.org/10.3389/fnbeh.2017.00061 Text en Copyright © 2017 Neromyliotis and Moschovakis. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Neromyliotis, Eleftherios
Moschovakis, A. K.
Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title_full Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title_fullStr Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title_full_unstemmed Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title_short Response Properties of Motor Equivalence Neurons of the Primate Premotor Cortex
title_sort response properties of motor equivalence neurons of the primate premotor cortex
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388740/
https://www.ncbi.nlm.nih.gov/pubmed/28446867
http://dx.doi.org/10.3389/fnbeh.2017.00061
work_keys_str_mv AT neromyliotiseleftherios responsepropertiesofmotorequivalenceneuronsoftheprimatepremotorcortex
AT moschovakisak responsepropertiesofmotorequivalenceneuronsoftheprimatepremotorcortex