Cargando…
Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities
Representing large biological data as networks is becoming increasingly adopted for predicting gene function while elucidating the multifaceted organization of life processes. In grapevine (Vitis vinifera L.), network analyses have been mostly adopted to contribute to the understanding of the regula...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388765/ https://www.ncbi.nlm.nih.gov/pubmed/28446914 http://dx.doi.org/10.3389/fpls.2017.00505 |
Sumario: | Representing large biological data as networks is becoming increasingly adopted for predicting gene function while elucidating the multifaceted organization of life processes. In grapevine (Vitis vinifera L.), network analyses have been mostly adopted to contribute to the understanding of the regulatory mechanisms that control berry composition. Whereas, some studies have used gene co-expression networks to find common pathways and putative targets for transcription factors related to development and metabolism, others have defined networks of primary and secondary metabolites for characterizing the main metabolic differences between cultivars throughout fruit ripening. Lately, proteomic-related networks and those integrating genome-wide analyses of promoter regulatory elements have also been generated. The integration of all these data in multilayered networks allows building complex maps of molecular regulation and interaction. This perspective article describes the currently available network data and related resources for grapevine. With the aim of illustrating data integration approaches into network construction and analysis in grapevine, we searched for berry-specific regulators of the phenylpropanoid pathway. We generated a composite network consisting of overlaying maps of co-expression between structural and transcription factor genes, integrated with the presence of promoter cis-binding elements, microRNAs, and long non-coding RNAs (lncRNA). This approach revealed new uncharacterized transcription factors together with several microRNAs potentially regulating different steps of the phenylpropanoid pathway, and one particular lncRNA compromising the expression of nine stilbene synthase (STS) genes located in chromosome 10. Application of network-based approaches into multi-omics data will continue providing supplementary resources to address important questions regarding grapevine fruit quality and composition. |
---|