Cargando…

Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates

Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (T(r) ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Barton, C. W., Ostler, T. A., Huskisson, D., Kinane, C. J., Haigh, S. J., Hrkac, G., Thomson, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388839/
https://www.ncbi.nlm.nih.gov/pubmed/28401915
http://dx.doi.org/10.1038/srep44397
_version_ 1782521186463252480
author Barton, C. W.
Ostler, T. A.
Huskisson, D.
Kinane, C. J.
Haigh, S. J.
Hrkac, G.
Thomson, T.
author_facet Barton, C. W.
Ostler, T. A.
Huskisson, D.
Kinane, C. J.
Haigh, S. J.
Hrkac, G.
Thomson, T.
author_sort Barton, C. W.
collection PubMed
description Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (T(r) ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and functionalise composites. A key requirement in realising multifunctional devices is the need to understand and control the properties of FeRh in the extreme thin film limit (t(FeRh) < 10 nm) where interfaces are crucial. Here we determine the properties of FeRh films in the thickness range 2.5–10 nm grown directly on MgO substrates. Our magnetometry and structural measurements show that a perpendicular strain field exists in these thin films which results in an increase in the phase transition temperature as thickness is reduced. Modelling using a spin dynamics approach supports the experimental observations demonstrating the critical role of the atomic layers close to the MgO interface.
format Online
Article
Text
id pubmed-5388839
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53888392017-04-14 Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates Barton, C. W. Ostler, T. A. Huskisson, D. Kinane, C. J. Haigh, S. J. Hrkac, G. Thomson, T. Sci Rep Article Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (T(r) ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and functionalise composites. A key requirement in realising multifunctional devices is the need to understand and control the properties of FeRh in the extreme thin film limit (t(FeRh) < 10 nm) where interfaces are crucial. Here we determine the properties of FeRh films in the thickness range 2.5–10 nm grown directly on MgO substrates. Our magnetometry and structural measurements show that a perpendicular strain field exists in these thin films which results in an increase in the phase transition temperature as thickness is reduced. Modelling using a spin dynamics approach supports the experimental observations demonstrating the critical role of the atomic layers close to the MgO interface. Nature Publishing Group 2017-04-12 /pmc/articles/PMC5388839/ /pubmed/28401915 http://dx.doi.org/10.1038/srep44397 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Barton, C. W.
Ostler, T. A.
Huskisson, D.
Kinane, C. J.
Haigh, S. J.
Hrkac, G.
Thomson, T.
Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title_full Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title_fullStr Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title_full_unstemmed Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title_short Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates
title_sort substrate induced strain field in ferh epilayers grown on single crystal mgo (001) substrates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388839/
https://www.ncbi.nlm.nih.gov/pubmed/28401915
http://dx.doi.org/10.1038/srep44397
work_keys_str_mv AT bartoncw substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT ostlerta substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT huskissond substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT kinanecj substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT haighsj substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT hrkacg substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates
AT thomsont substrateinducedstrainfieldinferhepilayersgrownonsinglecrystalmgo001substrates