Cargando…

A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions

Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Richard L., Bentley, Christopher D. B., Pedernales, Julen S., Lamata, Lucas, Solano, Enrique, Carvalho, André R. R., Hope, Joseph J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388870/
https://www.ncbi.nlm.nih.gov/pubmed/28401945
http://dx.doi.org/10.1038/srep46197
_version_ 1782521191901167616
author Taylor, Richard L.
Bentley, Christopher D. B.
Pedernales, Julen S.
Lamata, Lucas
Solano, Enrique
Carvalho, André R. R.
Hope, Joseph J.
author_facet Taylor, Richard L.
Bentley, Christopher D. B.
Pedernales, Julen S.
Lamata, Lucas
Solano, Enrique
Carvalho, André R. R.
Hope, Joseph J.
author_sort Taylor, Richard L.
collection PubMed
description Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10(−5) in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.
format Online
Article
Text
id pubmed-5388870
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53888702017-04-14 A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions Taylor, Richard L. Bentley, Christopher D. B. Pedernales, Julen S. Lamata, Lucas Solano, Enrique Carvalho, André R. R. Hope, Joseph J. Sci Rep Article Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10(−5) in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period. Nature Publishing Group 2017-04-12 /pmc/articles/PMC5388870/ /pubmed/28401945 http://dx.doi.org/10.1038/srep46197 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Taylor, Richard L.
Bentley, Christopher D. B.
Pedernales, Julen S.
Lamata, Lucas
Solano, Enrique
Carvalho, André R. R.
Hope, Joseph J.
A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title_full A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title_fullStr A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title_full_unstemmed A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title_short A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
title_sort study on fast gates for large-scale quantum simulation with trapped ions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388870/
https://www.ncbi.nlm.nih.gov/pubmed/28401945
http://dx.doi.org/10.1038/srep46197
work_keys_str_mv AT taylorrichardl astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT bentleychristopherdb astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT pedernalesjulens astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT lamatalucas astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT solanoenrique astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT carvalhoandrerr astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT hopejosephj astudyonfastgatesforlargescalequantumsimulationwithtrappedions
AT taylorrichardl studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT bentleychristopherdb studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT pedernalesjulens studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT lamatalucas studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT solanoenrique studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT carvalhoandrerr studyonfastgatesforlargescalequantumsimulationwithtrappedions
AT hopejosephj studyonfastgatesforlargescalequantumsimulationwithtrappedions