Cargando…
A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388870/ https://www.ncbi.nlm.nih.gov/pubmed/28401945 http://dx.doi.org/10.1038/srep46197 |
_version_ | 1782521191901167616 |
---|---|
author | Taylor, Richard L. Bentley, Christopher D. B. Pedernales, Julen S. Lamata, Lucas Solano, Enrique Carvalho, André R. R. Hope, Joseph J. |
author_facet | Taylor, Richard L. Bentley, Christopher D. B. Pedernales, Julen S. Lamata, Lucas Solano, Enrique Carvalho, André R. R. Hope, Joseph J. |
author_sort | Taylor, Richard L. |
collection | PubMed |
description | Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10(−5) in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period. |
format | Online Article Text |
id | pubmed-5388870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-53888702017-04-14 A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions Taylor, Richard L. Bentley, Christopher D. B. Pedernales, Julen S. Lamata, Lucas Solano, Enrique Carvalho, André R. R. Hope, Joseph J. Sci Rep Article Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10(−5) in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period. Nature Publishing Group 2017-04-12 /pmc/articles/PMC5388870/ /pubmed/28401945 http://dx.doi.org/10.1038/srep46197 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Taylor, Richard L. Bentley, Christopher D. B. Pedernales, Julen S. Lamata, Lucas Solano, Enrique Carvalho, André R. R. Hope, Joseph J. A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title | A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title_full | A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title_fullStr | A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title_full_unstemmed | A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title_short | A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions |
title_sort | study on fast gates for large-scale quantum simulation with trapped ions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388870/ https://www.ncbi.nlm.nih.gov/pubmed/28401945 http://dx.doi.org/10.1038/srep46197 |
work_keys_str_mv | AT taylorrichardl astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT bentleychristopherdb astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT pedernalesjulens astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT lamatalucas astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT solanoenrique astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT carvalhoandrerr astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT hopejosephj astudyonfastgatesforlargescalequantumsimulationwithtrappedions AT taylorrichardl studyonfastgatesforlargescalequantumsimulationwithtrappedions AT bentleychristopherdb studyonfastgatesforlargescalequantumsimulationwithtrappedions AT pedernalesjulens studyonfastgatesforlargescalequantumsimulationwithtrappedions AT lamatalucas studyonfastgatesforlargescalequantumsimulationwithtrappedions AT solanoenrique studyonfastgatesforlargescalequantumsimulationwithtrappedions AT carvalhoandrerr studyonfastgatesforlargescalequantumsimulationwithtrappedions AT hopejosephj studyonfastgatesforlargescalequantumsimulationwithtrappedions |