Cargando…

Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2

BACKGROUND: Microalgae are promising sources of lipid triacylglycerol (TAG) for biodiesel production. However, to date, microalgal biodiesel is technically feasible, but not yet economically viable. Increasing TAG content and productivity are important to achieve economic viability of microalgal bio...

Descripción completa

Detalles Bibliográficos
Autores principales: Klaitong, Paeka, Fa-aroonsawat, Sirirat, Chungjatupornchai, Wipa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389083/
https://www.ncbi.nlm.nih.gov/pubmed/28403867
http://dx.doi.org/10.1186/s12934-017-0677-x
_version_ 1782521226940383232
author Klaitong, Paeka
Fa-aroonsawat, Sirirat
Chungjatupornchai, Wipa
author_facet Klaitong, Paeka
Fa-aroonsawat, Sirirat
Chungjatupornchai, Wipa
author_sort Klaitong, Paeka
collection PubMed
description BACKGROUND: Microalgae are promising sources of lipid triacylglycerol (TAG) for biodiesel production. However, to date, microalgal biodiesel is technically feasible, but not yet economically viable. Increasing TAG content and productivity are important to achieve economic viability of microalgal biodiesel. To increase TAG content, oleaginous microalga Neochloris oleoabundans was genetically engineered with an endogenous key enzyme diacylglycerol acyltransferase 2 (NeoDGAT2) responsible for TAG biosynthesis. RESULTS: The integration of NeoDGAT2 expression cassettes in N. oleoabundans transformant was confirmed by PCR. The neutral lipid accumulation in the transformant detected by Nile red staining was accelerated and 1.9-fold higher than in wild type; the lipid bodies in the transformant visualized under fluorescence microscope were also larger. The NeoDGAT2 transcript was two-fold higher in the transformant than wild type. Remarkably higher lipid accumulation was found in the transformant than wild type: total lipid content increased 1.6-to 2.3-fold up to 74.5 ± 4.0% dry cell weight (DCW) and total lipid productivity increased 1.6- to 3.2-fold up to 14.6 ± 2.0 mg/L/day; while TAG content increased 1.8- to 3.2-fold up to 46.1 ± 1.6% DCW and TAG productivity increased 1.6- to 4.3-fold up to 8.9 ± 1.3 mg/L/day. A significantly altered fatty acid composition was detected in the transformant compared to wild type; the levels of saturated fatty acid C16:0 increased double to 49%, whereas C18:0 was reduced triple to 6%. Long-term stability was observed in the transformant continuously maintained in solid medium over 100 generations in a period of about 4 years. CONCLUSIONS: Our results demonstrate the increased TAG content and productivity in N. oleoabundans by NeoDGAT2 overexpression that may offer the first step towards making microalgae an economically feasible source for biodiesel production. The strategy for genetically improved microalga presented in this study can be applied to other microalgal species possessing desired characteristics for industrial biofuel production.
format Online
Article
Text
id pubmed-5389083
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53890832017-04-14 Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2 Klaitong, Paeka Fa-aroonsawat, Sirirat Chungjatupornchai, Wipa Microb Cell Fact Research BACKGROUND: Microalgae are promising sources of lipid triacylglycerol (TAG) for biodiesel production. However, to date, microalgal biodiesel is technically feasible, but not yet economically viable. Increasing TAG content and productivity are important to achieve economic viability of microalgal biodiesel. To increase TAG content, oleaginous microalga Neochloris oleoabundans was genetically engineered with an endogenous key enzyme diacylglycerol acyltransferase 2 (NeoDGAT2) responsible for TAG biosynthesis. RESULTS: The integration of NeoDGAT2 expression cassettes in N. oleoabundans transformant was confirmed by PCR. The neutral lipid accumulation in the transformant detected by Nile red staining was accelerated and 1.9-fold higher than in wild type; the lipid bodies in the transformant visualized under fluorescence microscope were also larger. The NeoDGAT2 transcript was two-fold higher in the transformant than wild type. Remarkably higher lipid accumulation was found in the transformant than wild type: total lipid content increased 1.6-to 2.3-fold up to 74.5 ± 4.0% dry cell weight (DCW) and total lipid productivity increased 1.6- to 3.2-fold up to 14.6 ± 2.0 mg/L/day; while TAG content increased 1.8- to 3.2-fold up to 46.1 ± 1.6% DCW and TAG productivity increased 1.6- to 4.3-fold up to 8.9 ± 1.3 mg/L/day. A significantly altered fatty acid composition was detected in the transformant compared to wild type; the levels of saturated fatty acid C16:0 increased double to 49%, whereas C18:0 was reduced triple to 6%. Long-term stability was observed in the transformant continuously maintained in solid medium over 100 generations in a period of about 4 years. CONCLUSIONS: Our results demonstrate the increased TAG content and productivity in N. oleoabundans by NeoDGAT2 overexpression that may offer the first step towards making microalgae an economically feasible source for biodiesel production. The strategy for genetically improved microalga presented in this study can be applied to other microalgal species possessing desired characteristics for industrial biofuel production. BioMed Central 2017-04-12 /pmc/articles/PMC5389083/ /pubmed/28403867 http://dx.doi.org/10.1186/s12934-017-0677-x Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Klaitong, Paeka
Fa-aroonsawat, Sirirat
Chungjatupornchai, Wipa
Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title_full Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title_fullStr Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title_full_unstemmed Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title_short Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
title_sort accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389083/
https://www.ncbi.nlm.nih.gov/pubmed/28403867
http://dx.doi.org/10.1186/s12934-017-0677-x
work_keys_str_mv AT klaitongpaeka acceleratedtriacylglycerolproductionandalteredfattyacidcompositioninoleaginousmicroalganeochlorisoleoabundansbyoverexpressionofdiacylglycerolacyltransferase2
AT faaroonsawatsirirat acceleratedtriacylglycerolproductionandalteredfattyacidcompositioninoleaginousmicroalganeochlorisoleoabundansbyoverexpressionofdiacylglycerolacyltransferase2
AT chungjatupornchaiwipa acceleratedtriacylglycerolproductionandalteredfattyacidcompositioninoleaginousmicroalganeochlorisoleoabundansbyoverexpressionofdiacylglycerolacyltransferase2