Cargando…
Using Networks to Combine “Big Data” and Traditional Surveillance to Improve Influenza Predictions
Seasonal influenza infects approximately 5–20% of the U.S. population every year, resulting in over 200,000 hospitalizations. The ability to more accurately assess infection levels and predict which regions have higher infection risk in future time periods can instruct targeted prevention and treatm...
Autores principales: | Davidson, Michael W., Haim, Dotan A., Radin, Jennifer M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389136/ https://www.ncbi.nlm.nih.gov/pubmed/25634021 http://dx.doi.org/10.1038/srep08154 |
Ejemplares similares
-
Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance
por: Santillana, Mauricio, et al.
Publicado: (2015) -
Digital Pharmacovigilance and Disease Surveillance: Combining Traditional and Big-Data Systems for Better Public Health
por: Salathé, Marcel
Publicado: (2016) -
Improving epidemic surveillance and response: big data is dead, long live big data
por: Buckee, Caroline
Publicado: (2020) -
Correlation of Tweets Mentioning Influenza Illness and Traditional
Surveillance Data
por: Heth, Zachary, et al.
Publicado: (2018) -
Outpatient influenza antivirals in a distributed data network for influenza surveillance
por: Cocoros, Noelle M., et al.
Publicado: (2018)