Cargando…
A high-throughput approach to profile RNA structure
Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389523/ https://www.ncbi.nlm.nih.gov/pubmed/27899588 http://dx.doi.org/10.1093/nar/gkw1094 |
Sumario: | Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%. |
---|