Cargando…
Correlation of choroidal thickness and ametropiain young adolescence
Choroid has been proposed to participate in the regulation of light refraction by changing its thickness. The present study aims to analyze the characteristics of choroidal thickness (CT), and its correlation with refractive error, axial length and age in young ametropia. A total of 51 subjects (102...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389608/ https://www.ncbi.nlm.nih.gov/pubmed/28403185 http://dx.doi.org/10.1371/journal.pone.0174385 |
Sumario: | Choroid has been proposed to participate in the regulation of light refraction by changing its thickness. The present study aims to analyze the characteristics of choroidal thickness (CT), and its correlation with refractive error, axial length and age in young ametropia. A total of 51 subjects (102 eyes), aged from 5 to 18 years old (mean age 10.04 ±2.78 years), with ametropia were included in the study. Choroidal imaging was obtained by enhanced depth imaging (EDI) of spectral domain Optical Coherence Tomography (OCT). CT was horizontally measured at 5 locations in across fovea with 1mm interval. We found that the spherical equivalent refractive diopter was from -7.25D to 1.6D (mean, -1.61D±1.82D), the mean axial length was 24.14mm±1.14mm. The closer to the optic disc the thinner the choroid is. CT between fovea and disc showed better correlation with refractive error (p< 0,01), axial length (p<0.01) and age (P<0.05) than those temporal to fovea. Our results indicated that the choroid is least thick around the optic disc. Thickness between fovea and optic disc is significantly associated with refractive error, axial length and age in growing adolescences. This result may help us understand the function of choroid during ametropic progression. |
---|