Cargando…
HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389630/ https://www.ncbi.nlm.nih.gov/pubmed/28403224 http://dx.doi.org/10.1371/journal.pone.0175114 |
_version_ | 1782521308815294464 |
---|---|
author | Tuo, Shouheng Yong, Longquan Deng, Fang’an Li, Yanhai Lin, Yong Lu, Qiuju |
author_facet | Tuo, Shouheng Yong, Longquan Deng, Fang’an Li, Yanhai Lin, Yong Lu, Qiuju |
author_sort | Tuo, Shouheng |
collection | PubMed |
description | Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. |
format | Online Article Text |
id | pubmed-5389630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53896302017-05-03 HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems Tuo, Shouheng Yong, Longquan Deng, Fang’an Li, Yanhai Lin, Yong Lu, Qiuju PLoS One Research Article Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. Public Library of Science 2017-04-12 /pmc/articles/PMC5389630/ /pubmed/28403224 http://dx.doi.org/10.1371/journal.pone.0175114 Text en © 2017 Tuo et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tuo, Shouheng Yong, Longquan Deng, Fang’an Li, Yanhai Lin, Yong Lu, Qiuju HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title | HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title_full | HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title_fullStr | HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title_full_unstemmed | HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title_short | HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems |
title_sort | hstlbo: a hybrid algorithm based on harmony search and teaching-learning-based optimization for complex high-dimensional optimization problems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389630/ https://www.ncbi.nlm.nih.gov/pubmed/28403224 http://dx.doi.org/10.1371/journal.pone.0175114 |
work_keys_str_mv | AT tuoshouheng hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems AT yonglongquan hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems AT dengfangan hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems AT liyanhai hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems AT linyong hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems AT luqiuju hstlboahybridalgorithmbasedonharmonysearchandteachinglearningbasedoptimizationforcomplexhighdimensionaloptimizationproblems |