Cargando…
Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage
Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389985/ https://www.ncbi.nlm.nih.gov/pubmed/28450862 http://dx.doi.org/10.3389/fimmu.2017.00418 |
_version_ | 1782521365922840576 |
---|---|
author | Calvo-Asensio, Irene Barthlott, Thomas von Muenchow, Lilly Lowndes, Noel F. Ceredig, Rhodri |
author_facet | Calvo-Asensio, Irene Barthlott, Thomas von Muenchow, Lilly Lowndes, Noel F. Ceredig, Rhodri |
author_sort | Calvo-Asensio, Irene |
collection | PubMed |
description | Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have profound deleterious effects on the hematopoietic system, including the thymic stroma, which may be one of the main causes for the prolonged periods of T-cell deficiency and the inefficient T cell reconstitution that are common following BMT. The DNA damage response (DDR) is a complex signaling network that allows cells to respond to all sorts of genotoxic insults. Hypoxia is known to modulate the DDR and play a role affecting the survival capacity of different cell types. In this study, we have characterized in detail the DDR of cortical and medullary TEC lines and their response to ionizing radiation, as well as the effects of hypoxia on their DDR. Although both mTECs and cTECs display relatively high radio-resistance, mTEC cells have an increased survival capacity to ionizing radiation (IR)-induced DNA damage, and hypoxia specifically decreases the radio-resistance of mTECs by upregulating the expression of the pro-apoptotic factor Bim. Analysis of the expression of TEC functional factors by primary mouse TECs showed a marked decrease of highly important genes for TEC function and confirmed cTECs as the most affected cell type by IR. These findings have important implications for improving the outcomes of BMT and promoting successful T cell reconstitution. |
format | Online Article Text |
id | pubmed-5389985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53899852017-04-27 Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage Calvo-Asensio, Irene Barthlott, Thomas von Muenchow, Lilly Lowndes, Noel F. Ceredig, Rhodri Front Immunol Immunology Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have profound deleterious effects on the hematopoietic system, including the thymic stroma, which may be one of the main causes for the prolonged periods of T-cell deficiency and the inefficient T cell reconstitution that are common following BMT. The DNA damage response (DDR) is a complex signaling network that allows cells to respond to all sorts of genotoxic insults. Hypoxia is known to modulate the DDR and play a role affecting the survival capacity of different cell types. In this study, we have characterized in detail the DDR of cortical and medullary TEC lines and their response to ionizing radiation, as well as the effects of hypoxia on their DDR. Although both mTECs and cTECs display relatively high radio-resistance, mTEC cells have an increased survival capacity to ionizing radiation (IR)-induced DNA damage, and hypoxia specifically decreases the radio-resistance of mTECs by upregulating the expression of the pro-apoptotic factor Bim. Analysis of the expression of TEC functional factors by primary mouse TECs showed a marked decrease of highly important genes for TEC function and confirmed cTECs as the most affected cell type by IR. These findings have important implications for improving the outcomes of BMT and promoting successful T cell reconstitution. Frontiers Media S.A. 2017-04-13 /pmc/articles/PMC5389985/ /pubmed/28450862 http://dx.doi.org/10.3389/fimmu.2017.00418 Text en Copyright © 2017 Calvo-Asensio, Barthlott, von Muenchow, Lowndes and Ceredig. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Calvo-Asensio, Irene Barthlott, Thomas von Muenchow, Lilly Lowndes, Noel F. Ceredig, Rhodri Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title | Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title_full | Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title_fullStr | Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title_full_unstemmed | Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title_short | Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage |
title_sort | differential response of mouse thymic epithelial cell types to ionizing radiation-induced dna damage |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389985/ https://www.ncbi.nlm.nih.gov/pubmed/28450862 http://dx.doi.org/10.3389/fimmu.2017.00418 |
work_keys_str_mv | AT calvoasensioirene differentialresponseofmousethymicepithelialcelltypestoionizingradiationinduceddnadamage AT barthlottthomas differentialresponseofmousethymicepithelialcelltypestoionizingradiationinduceddnadamage AT vonmuenchowlilly differentialresponseofmousethymicepithelialcelltypestoionizingradiationinduceddnadamage AT lowndesnoelf differentialresponseofmousethymicepithelialcelltypestoionizingradiationinduceddnadamage AT ceredigrhodri differentialresponseofmousethymicepithelialcelltypestoionizingradiationinduceddnadamage |