Cargando…

Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation

High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na(+) concentrations (high Na(+)) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic...

Descripción completa

Detalles Bibliográficos
Autores principales: Schierke, Florian, Wyrwoll, Margot J., Wisdorf, Martin, Niedzielski, Leon, Maase, Martina, Ruck, Tobias, Meuth, Sven G., Kusche-Vihrog, Kristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390251/
https://www.ncbi.nlm.nih.gov/pubmed/28406245
http://dx.doi.org/10.1038/srep46476
_version_ 1782521421310722048
author Schierke, Florian
Wyrwoll, Margot J.
Wisdorf, Martin
Niedzielski, Leon
Maase, Martina
Ruck, Tobias
Meuth, Sven G.
Kusche-Vihrog, Kristina
author_facet Schierke, Florian
Wyrwoll, Margot J.
Wisdorf, Martin
Niedzielski, Leon
Maase, Martina
Ruck, Tobias
Meuth, Sven G.
Kusche-Vihrog, Kristina
author_sort Schierke, Florian
collection PubMed
description High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na(+) concentrations (high Na(+)) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na(+) damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na(+) enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na(+)-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na(+) decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation.
format Online
Article
Text
id pubmed-5390251
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53902512017-04-14 Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation Schierke, Florian Wyrwoll, Margot J. Wisdorf, Martin Niedzielski, Leon Maase, Martina Ruck, Tobias Meuth, Sven G. Kusche-Vihrog, Kristina Sci Rep Article High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na(+) concentrations (high Na(+)) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na(+) damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na(+) enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na(+)-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na(+) decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation. Nature Publishing Group 2017-04-13 /pmc/articles/PMC5390251/ /pubmed/28406245 http://dx.doi.org/10.1038/srep46476 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Schierke, Florian
Wyrwoll, Margot J.
Wisdorf, Martin
Niedzielski, Leon
Maase, Martina
Ruck, Tobias
Meuth, Sven G.
Kusche-Vihrog, Kristina
Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title_full Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title_fullStr Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title_full_unstemmed Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title_short Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation
title_sort nanomechanics of the endothelial glycocalyx contribute to na(+)-induced vascular inflammation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390251/
https://www.ncbi.nlm.nih.gov/pubmed/28406245
http://dx.doi.org/10.1038/srep46476
work_keys_str_mv AT schierkeflorian nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT wyrwollmargotj nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT wisdorfmartin nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT niedzielskileon nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT maasemartina nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT rucktobias nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT meuthsveng nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation
AT kuschevihrogkristina nanomechanicsoftheendothelialglycocalyxcontributetonainducedvascularinflammation