Cargando…

Transcriptome analyses of differential gene expression in the bursa of Fabricius between Silky Fowl and White Leghorn

Hyperpigmentation in Silky Fowl (SF) results in aberrant immune cell development. However, how melanocytes regulate B-cell proliferation in the bursa of Fabricius (BF) is unclear. To resolve this conundrum, we collected BFs from three-week-old SF and White Leghorn (WL) female chickens for RNA sequen...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Deping, Zhang, Yuanyuan, Chen, Jianfei, Hua, Guoying, Li, Junying, Deng, Xuegong, Deng, Xuemei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390260/
https://www.ncbi.nlm.nih.gov/pubmed/28406147
http://dx.doi.org/10.1038/srep45959
Descripción
Sumario:Hyperpigmentation in Silky Fowl (SF) results in aberrant immune cell development. However, how melanocytes regulate B-cell proliferation in the bursa of Fabricius (BF) is unclear. To resolve this conundrum, we collected BFs from three-week-old SF and White Leghorn (WL) female chickens for RNA sequencing. The BF development was relatively weaker in SF than in WL. The transcriptome analyses identified 4848 differentially expressed genes, 326 long noncoding RNAs (lncRNAs), and 67 microRNAs in the BF of SF. The genes associated with melanogenesis was significantly higher, but that of the genes associated with the cytokine-cytokine receptor interactions and JAK-STAT signalling pathway was significantly lower in SF than in WL. Crucial biological processes, such as the receptor activity, cell communication, and cellular responses to stimuli, were clustered in SF. The predicted target lncRNAs genes were mainly associated with cell proliferation pathways such as JAK-STAT, WNT, MAPK, and Notch signalling pathways. Except for the above pathways, the target microRNA genes were related to the metabolism, melanogenesis, autophagy, and NOD-like and Toll-like receptor signalling pathways. The lncRNAs and microRNAs were predicted to regulate the JAK2, STAT3, and IL-15 genes. Thus, B-cell development in the BF of SF might be regulated and affected by noncoding RNAs.