Cargando…
Hepato-renal protective effects of hydroethanolic extract of Senna alata on enzymatic and nonenzymatic antioxidant systems in streptozotocin induced diabetic rats
BACKGROUND: Oxidative stress induced tissue damage might be the major cause for diabetes mellitus and its associated complications. The management of such oxidative stress is the biggest challenge over the decade. The main objective was to analyze the protective effect of ethanolic extract of Senna...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390425/ https://www.ncbi.nlm.nih.gov/pubmed/28462129 http://dx.doi.org/10.1016/j.imr.2016.06.005 |
Sumario: | BACKGROUND: Oxidative stress induced tissue damage might be the major cause for diabetes mellitus and its associated complications. The management of such oxidative stress is the biggest challenge over the decade. The main objective was to analyze the protective effect of ethanolic extract of Senna alata L leaves on enzymatic and nonenzymatic antioxidant systems of hepatic and renal tissues in Streptozotocin-induced diabetes in rats. METHODS: The use of streptozotocin diabetes was induced in the experimental rats and the subsequent therapeutic effects of standard drug glibenclamide and Senna alata L were compared. The levels of plasma insulin, glucose, urea, uric acid, creatinine, vitamin C, vitamin E, reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione-s-tranferase were assayed in control and experimental groups of rats. RESULTS: These alterations were detected throughout the study duration after the treatment with Senna alata L and glibenclamide. A significant raise followed by the treatment with Senna alata leaves in vitamin E, catalase, glutathione peroxidase and glutathione-s-tranferase was observed. It has been found that notable decline in the levels of vitamin C, reduced glutathione were observed in diabetic rats. The liver and kidney based antioxidant enzyme activities were significantly responsive to the treatment in diabetic rats. Apart from these antioxidant system, some vital changes were detected in the typical biochemical parameters such as level of protein, urea, uric acid, and creatinine from abnormal into normal in both the control and induced rats. CONCLUSION: From the above said observations, it was very clear that, Senna alata has helped to manage the oxidative tension in diabetic rats, which in turn may greatly support the hypoglycaemic potency of Senna alata L. |
---|