Cargando…
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
Aiming at the problem of gene expression profile's high redundancy and heavy noise, a new feature extraction model based on nonnegative dual graph regularized latent low-rank representation (NNDGLLRR) is presented on the basis of latent low-rank representation (Lat-LRR). By introducing dual gra...
Autores principales: | Yang, Guoliang, Hu, Zhengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390636/ https://www.ncbi.nlm.nih.gov/pubmed/28466003 http://dx.doi.org/10.1155/2017/1096028 |
Ejemplares similares
-
Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation
por: Li, Ao, et al.
Publicado: (2019) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering
por: Zhu, Rong, et al.
Publicado: (2017) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013) -
A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection
por: Liu, Qi
Publicado: (2022)