Cargando…

Empirical Driven Automatic Detection of Lobulation Imaging Signs in Lung CT

Computer-aided detection (CAD) of lobulation can help radiologists to diagnose/detect lung diseases easily and accurately. Compared to CAD of nodule and other lung lesions, CAD of lobulation remained an unexplored problem due to very complex and varying nature of lobulation. Thus, many state-of-the-...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Guanghui, Liu, Xiabi, Soomro, Nouman Q., Sun, Jia, Zhao, Yanfeng, Zhao, Xinming, Zhou, Chunwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390675/
https://www.ncbi.nlm.nih.gov/pubmed/28466009
http://dx.doi.org/10.1155/2017/3842659
Descripción
Sumario:Computer-aided detection (CAD) of lobulation can help radiologists to diagnose/detect lung diseases easily and accurately. Compared to CAD of nodule and other lung lesions, CAD of lobulation remained an unexplored problem due to very complex and varying nature of lobulation. Thus, many state-of-the-art methods could not detect successfully. Hence, we revisited classical methods with the capability of extracting undulated characteristics and designed a sliding window based framework for lobulation detection in this paper. Under the designed framework, we investigated three categories of lobulation classification algorithms: template matching, feature based classifier, and bending energy. The resultant detection algorithms were evaluated through experiments on LISS database. The experimental results show that the algorithm based on combination of global context feature and BOF encoding has best overall performance, resulting in F1 score of 0.1009. Furthermore, bending energy method is shown to be appropriate for reducing false positives. We performed bending energy method following the LIOP-LBP mixture feature, the average positive detection per image was reduced from 30 to 22, and F1 score increased to 0.0643 from 0.0599. To the best of our knowledge this is the first kind of work for direct lobulation detection and first application of bending energy to any kind of lobulation work.