Cargando…

An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affective...

Descripción completa

Detalles Bibliográficos
Autores principales: Junghöfer, Markus, Rehbein, Maimu Alissa, Maitzen, Julius, Schindler, Sebastian, Kissler, Johanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390753/
https://www.ncbi.nlm.nih.gov/pubmed/28008078
http://dx.doi.org/10.1093/scan/nsw179
Descripción
Sumario:Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning.