Cargando…
Detecting knee osteoarthritis and its discriminating parameters using random forests
This paper tackles the problem of automatic detection of knee osteoarthritis. A computer system is built that takes as input the body kinetics and produces as output not only an estimation of presence of the knee osteoarthritis, as previously done in the literature, but also the most discriminating...
Autores principales: | Kotti, Margarita, Duffell, Lynsey D., Faisal, Aldo A., McGregor, Alison H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Butterworth-Heinemann
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390773/ https://www.ncbi.nlm.nih.gov/pubmed/28242181 http://dx.doi.org/10.1016/j.medengphy.2017.02.004 |
Ejemplares similares
-
The Complexity of Human Walking: A Knee Osteoarthritis Study
por: Kotti, Margarita, et al.
Publicado: (2014) -
Predicting knee osteoarthritis risk in injured populations
por: Long, Michael J., et al.
Publicado: (2017) -
Balance and gait adaptations in patients with early knee osteoarthritis()
por: Duffell, Lynsey D., et al.
Publicado: (2014) -
Knee moments of anterior cruciate ligament reconstructed and control participants during normal and inclined walking
por: Varma, Raghav K, et al.
Publicado: (2014) -
Electromyographic activity of pelvic and lower limb muscles during postural tasks in people with benign joint hypermobility syndrome and non hypermobile people. A pilot study
por: Greenwood, Naomi L., et al.
Publicado: (2011)