Cargando…

A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites

Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyz...

Descripción completa

Detalles Bibliográficos
Autores principales: Marchenko, Olena O., Das, Sulagna, Yu, Ji, Novak, Igor L., Rodionov, Vladimir I., Efimova, Nadia, Svitkina, Tatyana, Wolgemuth, Charles W., Loew, Leslie M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391179/
https://www.ncbi.nlm.nih.gov/pubmed/28228546
http://dx.doi.org/10.1091/mbc.E16-06-0461
_version_ 1783229230548516864
author Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
author_facet Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
author_sort Marchenko, Olena O.
collection PubMed
description Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics.
format Online
Article
Text
id pubmed-5391179
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-53911792017-06-30 A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. Mol Biol Cell Articles Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. The American Society for Cell Biology 2017-04-15 /pmc/articles/PMC5391179/ /pubmed/28228546 http://dx.doi.org/10.1091/mbc.E16-06-0461 Text en © 2017 Marchenko et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.
spellingShingle Articles
Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_full A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_fullStr A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_full_unstemmed A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_short A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_sort minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391179/
https://www.ncbi.nlm.nih.gov/pubmed/28228546
http://dx.doi.org/10.1091/mbc.E16-06-0461
work_keys_str_mv AT marchenkoolenao aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT dassulagna aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT yuji aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT novakigorl aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT rodionovvladimiri aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT efimovanadia aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT svitkinatatyana aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT wolgemuthcharlesw aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT loewlesliem aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT marchenkoolenao minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT dassulagna minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT yuji minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT novakigorl minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT rodionovvladimiri minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT efimovanadia minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT svitkinatatyana minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT wolgemuthcharlesw minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT loewlesliem minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites