Cargando…
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyz...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391179/ https://www.ncbi.nlm.nih.gov/pubmed/28228546 http://dx.doi.org/10.1091/mbc.E16-06-0461 |
_version_ | 1783229230548516864 |
---|---|
author | Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. |
author_facet | Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. |
author_sort | Marchenko, Olena O. |
collection | PubMed |
description | Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. |
format | Online Article Text |
id | pubmed-5391179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-53911792017-06-30 A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. Mol Biol Cell Articles Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. The American Society for Cell Biology 2017-04-15 /pmc/articles/PMC5391179/ /pubmed/28228546 http://dx.doi.org/10.1091/mbc.E16-06-0461 Text en © 2017 Marchenko et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. |
spellingShingle | Articles Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title | A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_full | A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_fullStr | A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_full_unstemmed | A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_short | A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_sort | minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391179/ https://www.ncbi.nlm.nih.gov/pubmed/28228546 http://dx.doi.org/10.1091/mbc.E16-06-0461 |
work_keys_str_mv | AT marchenkoolenao aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT dassulagna aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT yuji aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT novakigorl aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT rodionovvladimiri aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT efimovanadia aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT svitkinatatyana aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT wolgemuthcharlesw aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT loewlesliem aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT marchenkoolenao minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT dassulagna minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT yuji minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT novakigorl minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT rodionovvladimiri minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT efimovanadia minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT svitkinatatyana minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT wolgemuthcharlesw minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT loewlesliem minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites |