Cargando…

The Computational Studies of Plasmon Interaction

In this paper, an interaction of metal nanoparticles that appears in the extinction spectra was investigated. The mutual coupling between the nanoparticles, the effect of size difference, and the interparticle separation in silver nanoparticle dimers are studied by computer discrete dipole approxima...

Descripción completa

Detalles Bibliográficos
Autores principales: Demchuk, Antonina, Bolesta, Ivan, Kushnir, Oleksii, Kolych, Ihor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391345/
https://www.ncbi.nlm.nih.gov/pubmed/28410551
http://dx.doi.org/10.1186/s11671-017-2050-8
Descripción
Sumario:In this paper, an interaction of metal nanoparticles that appears in the extinction spectra was investigated. The mutual coupling between the nanoparticles, the effect of size difference, and the interparticle separation in silver nanoparticle dimers are studied by computer discrete dipole approximation methods. The obtained results show that nanoparticle interaction results in the distinct collective modes, known as the low-energy bonding modes and the higher-energy antibounding modes. The spectral position of the modes is analyzed as a function of the ratio of interparticle distance to particle size that reduces the dependency on the particle size itself. The optical spectra of nanoparticles that form the fractal cluster were investigated. It was found that the number of spectral bands increase with the growth of the number of nanoparticles in the fractal cluster, which are described within the plasmon hybridization model.