Cargando…

Riesz potential and its commutators on Orlicz spaces

In the present paper, we shall give necessary and sufficient conditions for the strong and weak boundedness of the Riesz potential operator [Formula: see text] on Orlicz spaces. Cianchi (J. Lond. Math. Soc. 60(1):247-286, 2011) found necessary and sufficient conditions on general Young functions Φ a...

Descripción completa

Detalles Bibliográficos
Autores principales: Guliyev, Vagif S, Deringoz, Fatih, Hasanov, Sabir G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391400/
https://www.ncbi.nlm.nih.gov/pubmed/28469352
http://dx.doi.org/10.1186/s13660-017-1349-4
_version_ 1783229263355314176
author Guliyev, Vagif S
Deringoz, Fatih
Hasanov, Sabir G
author_facet Guliyev, Vagif S
Deringoz, Fatih
Hasanov, Sabir G
author_sort Guliyev, Vagif S
collection PubMed
description In the present paper, we shall give necessary and sufficient conditions for the strong and weak boundedness of the Riesz potential operator [Formula: see text] on Orlicz spaces. Cianchi (J. Lond. Math. Soc. 60(1):247-286, 2011) found necessary and sufficient conditions on general Young functions Φ and Ψ ensuring that this operator is of weak or strong type from [Formula: see text] into [Formula: see text] . Our characterizations for the boundedness of the above-mentioned operator are different from the ones in (Cianchi in J. Lond. Math. Soc. 60(1):247-286, 2011). As an application of these results, we consider the boundedness of the commutators of Riesz potential operator [Formula: see text] on Orlicz spaces when b belongs to the BMO and Lipschitz spaces, respectively.
format Online
Article
Text
id pubmed-5391400
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-53914002017-05-01 Riesz potential and its commutators on Orlicz spaces Guliyev, Vagif S Deringoz, Fatih Hasanov, Sabir G J Inequal Appl Research In the present paper, we shall give necessary and sufficient conditions for the strong and weak boundedness of the Riesz potential operator [Formula: see text] on Orlicz spaces. Cianchi (J. Lond. Math. Soc. 60(1):247-286, 2011) found necessary and sufficient conditions on general Young functions Φ and Ψ ensuring that this operator is of weak or strong type from [Formula: see text] into [Formula: see text] . Our characterizations for the boundedness of the above-mentioned operator are different from the ones in (Cianchi in J. Lond. Math. Soc. 60(1):247-286, 2011). As an application of these results, we consider the boundedness of the commutators of Riesz potential operator [Formula: see text] on Orlicz spaces when b belongs to the BMO and Lipschitz spaces, respectively. Springer International Publishing 2017-04-13 2017 /pmc/articles/PMC5391400/ /pubmed/28469352 http://dx.doi.org/10.1186/s13660-017-1349-4 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Guliyev, Vagif S
Deringoz, Fatih
Hasanov, Sabir G
Riesz potential and its commutators on Orlicz spaces
title Riesz potential and its commutators on Orlicz spaces
title_full Riesz potential and its commutators on Orlicz spaces
title_fullStr Riesz potential and its commutators on Orlicz spaces
title_full_unstemmed Riesz potential and its commutators on Orlicz spaces
title_short Riesz potential and its commutators on Orlicz spaces
title_sort riesz potential and its commutators on orlicz spaces
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391400/
https://www.ncbi.nlm.nih.gov/pubmed/28469352
http://dx.doi.org/10.1186/s13660-017-1349-4
work_keys_str_mv AT guliyevvagifs rieszpotentialanditscommutatorsonorliczspaces
AT deringozfatih rieszpotentialanditscommutatorsonorliczspaces
AT hasanovsabirg rieszpotentialanditscommutatorsonorliczspaces