Cargando…
The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited
Studies carried out during the past 45 years on the effects of chronic low-frequency stimulation on skeletal muscle have revealed a multiplicity of adaptive changes of muscle fibres in response to increased activity. As reflected by induced changes in the metabolic properties, protein profiles of th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PAGEPress Publications, Pavia, Italy
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391529/ https://www.ncbi.nlm.nih.gov/pubmed/28458806 http://dx.doi.org/10.4081/ejtm.2017.6368 |
_version_ | 1783229288513798144 |
---|---|
author | Pette, Dirk Vrbová, Gerta |
author_facet | Pette, Dirk Vrbová, Gerta |
author_sort | Pette, Dirk |
collection | PubMed |
description | Studies carried out during the past 45 years on the effects of chronic low-frequency stimulation on skeletal muscle have revealed a multiplicity of adaptive changes of muscle fibres in response to increased activity. As reflected by induced changes in the metabolic properties, protein profiles of the contractile machinery and elements of the Ca(2+)-regulatory system, all essential components of the muscle fibre undergo pronounced changes in their properties that ultimately lead to their reversible transformation from fast-to-slow phenotype. The chronic low-frequency stimulation experiment thus allows exploring many aspects of the plasticity of mammalian skeletal muscle. Moreover it offers the possibility of elucidating molecular mechanisms that remodel phenotypic properties of a differentiated post-mitotic cell during adaptation to altered functional demands. The understanding of the adaptive potential of muscle can be taken advantage of for repairing muscle damage in various muscle diseases. In addition it can be used to prevent muscle wasting during inactivity and aging. Indeed, pioneering studies are still the sound grounds for the many current applications of Functional Electrical Stimulation and for the related research activities that are still proposed and funded. |
format | Online Article Text |
id | pubmed-5391529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | PAGEPress Publications, Pavia, Italy |
record_format | MEDLINE/PubMed |
spelling | pubmed-53915292017-04-28 The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited Pette, Dirk Vrbová, Gerta Eur J Transl Myol Reviews Studies carried out during the past 45 years on the effects of chronic low-frequency stimulation on skeletal muscle have revealed a multiplicity of adaptive changes of muscle fibres in response to increased activity. As reflected by induced changes in the metabolic properties, protein profiles of the contractile machinery and elements of the Ca(2+)-regulatory system, all essential components of the muscle fibre undergo pronounced changes in their properties that ultimately lead to their reversible transformation from fast-to-slow phenotype. The chronic low-frequency stimulation experiment thus allows exploring many aspects of the plasticity of mammalian skeletal muscle. Moreover it offers the possibility of elucidating molecular mechanisms that remodel phenotypic properties of a differentiated post-mitotic cell during adaptation to altered functional demands. The understanding of the adaptive potential of muscle can be taken advantage of for repairing muscle damage in various muscle diseases. In addition it can be used to prevent muscle wasting during inactivity and aging. Indeed, pioneering studies are still the sound grounds for the many current applications of Functional Electrical Stimulation and for the related research activities that are still proposed and funded. PAGEPress Publications, Pavia, Italy 2017-02-24 /pmc/articles/PMC5391529/ /pubmed/28458806 http://dx.doi.org/10.4081/ejtm.2017.6368 Text en http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Reviews Pette, Dirk Vrbová, Gerta The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title | The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title_full | The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title_fullStr | The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title_full_unstemmed | The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title_short | The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited |
title_sort | contribution of neuromuscular stimulation in elucidating muscle plasticity revisited |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391529/ https://www.ncbi.nlm.nih.gov/pubmed/28458806 http://dx.doi.org/10.4081/ejtm.2017.6368 |
work_keys_str_mv | AT pettedirk thecontributionofneuromuscularstimulationinelucidatingmuscleplasticityrevisited AT vrbovagerta thecontributionofneuromuscularstimulationinelucidatingmuscleplasticityrevisited AT pettedirk contributionofneuromuscularstimulationinelucidatingmuscleplasticityrevisited AT vrbovagerta contributionofneuromuscularstimulationinelucidatingmuscleplasticityrevisited |