Cargando…
Using recurrent neural network models for early detection of heart failure onset
Objective: We explored whether use of deep learning to model temporal relations among events in electronic health records (EHRs) would improve model performance in predicting initial diagnosis of heart failure (HF) compared to conventional methods that ignore temporality. Materials and Methods: Data...
Autores principales: | Choi, Edward, Schuetz, Andy, Stewart, Walter F, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391725/ https://www.ncbi.nlm.nih.gov/pubmed/27521897 http://dx.doi.org/10.1093/jamia/ocw112 |
Ejemplares similares
-
FLANNEL (Focal Loss bAsed Neural Network EnsembLe) for COVID-19 detection
por: Qiao, Zhi, et al.
Publicado: (2020) -
Expert-level sleep scoring with deep neural networks
por: Biswal, Siddharth, et al.
Publicado: (2018) -
Deep neural networks ensemble for detecting medication mentions in tweets
por: Weissenbacher, Davy, et al.
Publicado: (2019) -
STAN: spatio-temporal attention network for pandemic prediction using real-world evidence
por: Gao, Junyi, et al.
Publicado: (2021) -
Active neural networks to detect mentions of changes to medication treatment in social media
por: Weissenbacher, Davy, et al.
Publicado: (2021)