Cargando…
Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets
Objective: Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. Materials and Methods: The authors evaluated the first 24 hours of structured electronic hea...
Autores principales: | Chen, Jonathan H, Goldstein, Mary K, Asch, Steven M, Mackey, Lester, Altman, Russ B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391730/ https://www.ncbi.nlm.nih.gov/pubmed/27655861 http://dx.doi.org/10.1093/jamia/ocw136 |
Ejemplares similares
-
OrderRex clinical user testing: a randomized trial of recommender system decision support on simulated cases
por: Kumar, Andre, et al.
Publicado: (2020) -
Predicting inpatient pharmacy order interventions using provider action data
por: Balestra, Martina, et al.
Publicado: (2021) -
Mining for Clinical Expertise in (Undocumented) Order Sets to Power an Order Suggestion System
por: Chen, Jonathan H., et al.
Publicado: ( 201) -
ClinicNet: machine learning for personalized clinical order set recommendations
por: Wang, Jonathan X, et al.
Publicado: (2020) -
HyperGraphs.jl: representing higher-order relationships in Julia
por: Diaz, Léo P M, et al.
Publicado: (2022)