Cargando…
Predictive modelling using neuroimaging data in the presence of confounds
When training predictive models from neuroimaging data, we typically have available non-imaging variables such as age and gender that affect the imaging data but which we may be uninterested in from a clinical perspective. Such variables are commonly referred to as ‘confounds’. In this work, we firs...
Autores principales: | Rao, Anil, Monteiro, Joao M., Mourao-Miranda, Janaina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391990/ https://www.ncbi.nlm.nih.gov/pubmed/28143776 http://dx.doi.org/10.1016/j.neuroimage.2017.01.066 |
Ejemplares similares
-
Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important
por: Donini, Michele, et al.
Publicado: (2019) -
Measuring Abnormal Brains: Building Normative Rules in Neuroimaging Using One-Class Support Vector Machines
por: Sato, João Ricardo, et al.
Publicado: (2012) -
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
Confounds in neuroimaging: A clear case of sex as a confound in brain-based prediction
por: Weber, Kenneth A., et al.
Publicado: (2022) -
Diagnostic neuroimaging across diseases
por: Klöppel, Stefan, et al.
Publicado: (2011)