Cargando…

Imaging the dark emission of spasers

Spasers are a new class of laser devices with cavity sizes free from optical diffraction limit. They are an emergent tool for various applications, including biochemical sensing, superresolution imaging, and on-chip optical communication. According to its original definition, a spaser is a coherent...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hua-Zhou, Hu, Jia-Qi, Wang, Suo, Li, Bo, Wang, Xing-Yuan, Wang, Yi-Lun, Dai, Lun, Ma, Ren-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392029/
https://www.ncbi.nlm.nih.gov/pubmed/28439539
http://dx.doi.org/10.1126/sciadv.1601962
Descripción
Sumario:Spasers are a new class of laser devices with cavity sizes free from optical diffraction limit. They are an emergent tool for various applications, including biochemical sensing, superresolution imaging, and on-chip optical communication. According to its original definition, a spaser is a coherent surface plasmon amplifier that does not necessarily generate a radiative photon output. However, to date, spasers have only been studied with scattered photons, and their intrinsic surface plasmon emission is a “dark” emission that is yet to be revealed because of its evanescent nature. We directly image the surface plasmon emission of spasers in spatial, momentum, and frequency spaces simultaneously. We demonstrate a nanowire spaser with a coupling efficiency to plasmonic modes of 74%. This coupling efficiency can approach 100% in theory when the diameter of the nanowire becomes smaller than 50 nm. Our results provide clear evidence of the surface plasmon amplifier nature of spasers and will pave the way for their various applications.