Cargando…
Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models
In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time...
Autores principales: | Nilsaz-Dezfouli, Hamid, Abu-Bakar, Mohd Rizam, Arasan, Jayanthi, Adam, Mohd Bakri, Pourhoseingholi, Mohamad Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392036/ https://www.ncbi.nlm.nih.gov/pubmed/28469384 http://dx.doi.org/10.1177/1176935116686062 |
Ejemplares similares
-
Directional Slack-Based Measure for the Inverse Data Envelopment Analysis
por: Mirsalehy, Ali, et al.
Publicado: (2014) -
Mathematical epidemiologic and simulation modelling of first wave COVID-19 in Malaysia
por: Ariffin, Muhammad Rezal Kamel, et al.
Publicado: (2021) -
Robust Wavelength Selection Using Filter-Wrapper Method and Input Scaling on Near Infrared Spectral Data †
por: Silalahi, Divo Dharma, et al.
Publicado: (2020) -
Kernel partial diagnostic robust potential to handle high-dimensional and irregular data space on near infrared spectral data
por: Silalahi, Divo Dharma, et al.
Publicado: (2020) -
Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances for underground distribution system
por: Naidu, Kanendra, et al.
Publicado: (2020)