Cargando…
Using machine learning to estimate atmospheric Ambrosia pollen concentrations in Tulsa, OK
This article describes an example of using machine learning to estimate the abundance of airborne Ambrosia pollen for Tulsa, OK. Twenty-seven years of historical pollen observations were used. These pollen observations were combined with machine learning and a very complete meteorological and land s...
Autores principales: | Liu, Xun, Wu, Daji, Zewdie, Gebreab K, Wijerante, Lakitha, Timms, Christopher I, Riley, Alexander, Levetin, Estelle, Lary, David J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392111/ https://www.ncbi.nlm.nih.gov/pubmed/28469446 http://dx.doi.org/10.1177/1178630217699399 |
Ejemplares similares
-
Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Ambrosia Pollen
por: Zewdie, Gebreab K., et al.
Publicado: (2019) -
Aeroallergens and Climate Change in Tulsa, Oklahoma: Long-Term Trends in the South Central United States
por: Levetin, Estelle
Publicado: (2021) -
Insights Into the Morphology of the East Asia PM(2.5) Annual Cycle Provided by Machine Learning
por: Wu, Daji, et al.
Publicado: (2017) -
Tulsa Oklahoma Oktoberfest Tent Collapse Report
por: Deal, Kelly E., et al.
Publicado: (2012) -
The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine
por: Kasprzyk, Idalia, et al.
Publicado: (2010)