Cargando…
Joint L(1/2)-Norm Constraint and Graph-Laplacian PCA Method for Feature Extraction
Principal Component Analysis (PCA) as a tool for dimensionality reduction is widely used in many areas. In the area of bioinformatics, each involved variable corresponds to a specific gene. In order to improve the robustness of PCA-based method, this paper proposes a novel graph-Laplacian PCA algori...
Autores principales: | Feng, Chun-Mei, Gao, Ying-Lian, Liu, Jin-Xing, Wang, Juan, Wang, Dong-Qin, Wen, Chang-Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392409/ https://www.ncbi.nlm.nih.gov/pubmed/28470011 http://dx.doi.org/10.1155/2017/5073427 |
Ejemplares similares
-
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data
por: Feng, Chun-Mei, et al.
Publicado: (2019) -
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
por: Shang, Yilun
Publicado: (2015) -
On the Laplacian spectral radii of Halin graphs
por: Jia, Huicai, et al.
Publicado: (2017) -
An NMF-L(2,1)-Norm Constraint Method for Characteristic Gene Selection
por: Wang, Dong, et al.
Publicado: (2016)