Cargando…

Metabolic profiling identifies trehalose as an abundant and diurnally fluctuating metabolite in the microalga Ostreococcus tauri

INTRODUCTION: The picoeukaryotic alga Ostreococcus tauri (Chlorophyta) belongs to the widespread group of marine prasinophytes. Despite its ecological importance, little is known about the metabolism of this alga. OBJECTIVES: In this work, changes in the metabolome were quantified when O. tauri was...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirth, Matthias, Liverani, Silvia, Mahlow, Sebastian, Bouget, François-Yves, Pohnert, Georg, Sasso, Severin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392535/
https://www.ncbi.nlm.nih.gov/pubmed/28473745
http://dx.doi.org/10.1007/s11306-017-1203-1
Descripción
Sumario:INTRODUCTION: The picoeukaryotic alga Ostreococcus tauri (Chlorophyta) belongs to the widespread group of marine prasinophytes. Despite its ecological importance, little is known about the metabolism of this alga. OBJECTIVES: In this work, changes in the metabolome were quantified when O. tauri was grown under alternating cycles of 12 h light and 12 h darkness. METHODS: Algal metabolism was analyzed by gas chromatography-mass spectrometry. Using fluorescence-activated cell sorting, the bacteria associated with O. tauri were depleted to below 0.1% of total cells at the time of metabolic profiling. RESULTS: Of 111 metabolites quantified over light–dark cycles, 20 (18%) showed clear diurnal variations. The strongest fluctuations were found for trehalose. With an intracellular concentration of 1.6 mM in the dark, this disaccharide was six times more abundant at night than during the day. This fluctuation pattern of trehalose may be a consequence of starch degradation or of the synchronized cell cycle. On the other hand, maltose (and also sucrose) was below the detection limit (~10 μM). Accumulation of glycine in the light is in agreement with the presence of a classical glycolate pathway of photorespiration. We also provide evidence for the presence of fatty acid methyl and ethyl esters in O. tauri. CONCLUSIONS: This study shows how the metabolism of O. tauri adapts to day and night and gives new insights into the configuration of the carbon metabolism. In addition, several less common metabolites were identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-017-1203-1) contains supplementary material, which is available to authorized users.