Cargando…
Optimized LOWESS normalization parameter selection for DNA microarray data
BACKGROUND: Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with...
Autores principales: | Berger, John A, Hautaniemi, Sampsa, Järvinen, Anna-Kaarina, Edgren, Henrik, Mitra, Sanjit K, Astola, Jaakko |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539276/ https://www.ncbi.nlm.nih.gov/pubmed/15588297 http://dx.doi.org/10.1186/1471-2105-5-194 |
Ejemplares similares
-
Advanced analysis and visualization of gene copy number and expression data
por: Autio, Reija, et al.
Publicado: (2009) -
Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations
por: Autio, Reija, et al.
Publicado: (2009) -
Supervised Lowess normalization of comparative genome hybridization data – application to lactococcal strain comparisons
por: van Hijum, Sacha AFT, et al.
Publicado: (2008) -
Selecting normalization genes for small diagnostic microarrays
por: Jaeger, Jochen, et al.
Publicado: (2006) -
Rapid identification of bacterial pathogens using a PCR- and microarray-based assay
por: Järvinen, Anna-Kaarina, et al.
Publicado: (2009)