Cargando…

Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells

BACKGROUND: Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prio...

Descripción completa

Detalles Bibliográficos
Autores principales: Iglesia, Rebeca Piatniczka, Prado, Mariana Brandão, Cruz, Lilian, Martins, Vilma Regina, Santos, Tiago Góss, Lopes, Marilene Hohmuth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392955/
https://www.ncbi.nlm.nih.gov/pubmed/28412969
http://dx.doi.org/10.1186/s13287-017-0518-1
_version_ 1783229499712733184
author Iglesia, Rebeca Piatniczka
Prado, Mariana Brandão
Cruz, Lilian
Martins, Vilma Regina
Santos, Tiago Góss
Lopes, Marilene Hohmuth
author_facet Iglesia, Rebeca Piatniczka
Prado, Mariana Brandão
Cruz, Lilian
Martins, Vilma Regina
Santos, Tiago Góss
Lopes, Marilene Hohmuth
author_sort Iglesia, Rebeca Piatniczka
collection PubMed
description BACKGROUND: Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrP(C)) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. METHODS: GSCs expressing different levels of PrP(C) were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrP(C) binding site. Stable silencing of HOP was also performed in parental and/or PrP(C)-depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. RESULTS: We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrP(C) is upregulated compared to monolayer culture and co-localizes with CD133. PrP(C) silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrP(C) in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrP(C)-dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrP(C) and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrP(C)-HOP complex by a HOP peptide, which mimics the PrP(C) binding site, affects GSC self-renewal and proliferation indicating that the HOP-PrP(C) complex is required for GSC stemness. Furthermore, PrP(C)-depleted GSCs downregulate cell adhesion-related proteins and impair cell migration indicating a putative role for PrP(C) in the cell surface stability of cell adhesion molecules and GBM cell invasiveness, respectively. CONCLUSIONS: In conclusion, our results show that the modulation of HOP-PrP(C) engagement or the decrease of PrP(C) and HOP expression may represent a potential therapeutic intervention in GBM, regulating glioblastoma stem-like cell self-renewal, proliferation, and migration. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0518-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5392955
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53929552017-04-20 Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells Iglesia, Rebeca Piatniczka Prado, Mariana Brandão Cruz, Lilian Martins, Vilma Regina Santos, Tiago Góss Lopes, Marilene Hohmuth Stem Cell Res Ther Research BACKGROUND: Glioblastoma (GBM), a highly aggressive brain tumor, contains a subpopulation of glioblastoma stem-like cells (GSCs) that play roles in tumor maintenance, invasion, and therapeutic resistance. GSCs are therefore a promising target for GBM treatment. Our group identified the cellular prion protein (PrP(C)) and its partner, the co-chaperone Hsp70/90 organizing protein (HOP), as potential target candidates due to their role in GBM tumorigenesis and in neural stem cell maintenance. METHODS: GSCs expressing different levels of PrP(C) were cultured as neurospheres with growth factors, and characterized with stem cells markers and adhesion molecules markers through immunofluorescence and flow cytometry. We than evaluated GSC self-renewal and proliferation by clonal density assays and BrdU incorporation, respectively, in front of recombinant HOP treatment, combined or not with a HOP peptide which mimics the PrP(C) binding site. Stable silencing of HOP was also performed in parental and/or PrP(C)-depleted cell populations, and proliferation in vitro and tumor growth in vivo were evaluated. Migration assays were performed on laminin-1 pre-coated glass. RESULTS: We observed that, when GBM cells are cultured as neurospheres, they express specific stemness markers such as CD133, CD15, Oct4, and SOX2; PrP(C) is upregulated compared to monolayer culture and co-localizes with CD133. PrP(C) silencing downregulates the expression of molecules associated with cancer stem cells, upregulates markers of cell differentiation and affects GSC self-renewal, pointing to a pivotal role for PrP(C) in the maintenance of GSCs. Exogenous HOP treatment increases proliferation and self-renewal of GSCs in a PrP(C)-dependent manner while HOP knockdown disturbs the proliferation process. In vivo, PrP(C) and/or HOP knockdown potently inhibits the growth of subcutaneously implanted glioblastoma cells. In addition, disruption of the PrP(C)-HOP complex by a HOP peptide, which mimics the PrP(C) binding site, affects GSC self-renewal and proliferation indicating that the HOP-PrP(C) complex is required for GSC stemness. Furthermore, PrP(C)-depleted GSCs downregulate cell adhesion-related proteins and impair cell migration indicating a putative role for PrP(C) in the cell surface stability of cell adhesion molecules and GBM cell invasiveness, respectively. CONCLUSIONS: In conclusion, our results show that the modulation of HOP-PrP(C) engagement or the decrease of PrP(C) and HOP expression may represent a potential therapeutic intervention in GBM, regulating glioblastoma stem-like cell self-renewal, proliferation, and migration. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0518-1) contains supplementary material, which is available to authorized users. BioMed Central 2017-04-17 /pmc/articles/PMC5392955/ /pubmed/28412969 http://dx.doi.org/10.1186/s13287-017-0518-1 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Iglesia, Rebeca Piatniczka
Prado, Mariana Brandão
Cruz, Lilian
Martins, Vilma Regina
Santos, Tiago Góss
Lopes, Marilene Hohmuth
Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title_full Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title_fullStr Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title_full_unstemmed Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title_short Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
title_sort engagement of cellular prion protein with the co-chaperone hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392955/
https://www.ncbi.nlm.nih.gov/pubmed/28412969
http://dx.doi.org/10.1186/s13287-017-0518-1
work_keys_str_mv AT iglesiarebecapiatniczka engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells
AT pradomarianabrandao engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells
AT cruzlilian engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells
AT martinsvilmaregina engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells
AT santostiagogoss engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells
AT lopesmarilenehohmuth engagementofcellularprionproteinwiththecochaperonehsp7090organizingproteinregulatestheproliferationofglioblastomastemlikecells