Cargando…

MicroRNA-338-3p suppresses cell proliferation and induces apoptosis of non-small-cell lung cancer by targeting sphingosine kinase 2

BACKGROUND: Lung cancer is the major cause of cancer-related death worldwide, and 80% patients of lung cancer are non-small-cell lung cancer (NSCLC) cases. MicroRNAs are important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Studies indicate that sphi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Guowei, Zheng, Hao, Zhang, Guojun, Cheng, Ruirui, Lu, Chunya, Guo, Yijie, Zhao, Guoqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392967/
https://www.ncbi.nlm.nih.gov/pubmed/28428733
http://dx.doi.org/10.1186/s12935-017-0415-9
Descripción
Sumario:BACKGROUND: Lung cancer is the major cause of cancer-related death worldwide, and 80% patients of lung cancer are non-small-cell lung cancer (NSCLC) cases. MicroRNAs are important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Studies indicate that sphingosine kinase 2 (SphK2) promotes tumor progression in NSCLC, but how this occurs is unclear. Thus, we explored the effect of miR-338-3p targeting SphK2 on proliferation and apoptosis of NSCLC cells. METHODS: Expression of miR-338-3p and SphK2 in NSCLC A549 and H1299 cell lines was measured using qRT-PCR and Western blot. CCK-8 and colony formation assays were used to assess the effect of miR-338-3p on NSCLC cell line proliferation. Flow cytometry was used to study the effect of miR-338-3p on NSCLC apoptosis. Luciferase reporter assay and Western blot were used to confirm targeting of SphK2 by miR-338-3p. Finally, in vivo tumorigenesis studies were used to demonstrate subcutaneous tumor growth. RESULTS: miR-338-3p expression in 34 NSCLC clinical samples was downregulated and this was correlated with TNM stage. miR-338-3p significantly suppressed proliferation and induced apoptosis of NSCLC A549 and H1299 cells in vitro. SphK2 was a direct target of miR-338-3p. Overexpression of miR-338-3p significantly inhibited SphK2 expression and reduced luciferase reporter activity containing the SphK2 3′-untranslated region (3′-UTR) through the first binding site. SphK2 lacking 3′-UTR restored the effects of miR-338-3p on cell proliferation inhibition. miR-338-3p significantly inhibited tumorigenicity of NSCLC A549 and H1299 cells in a nude mouse xenograft model. CONCLUSIONS: Collectively, miR-338-3p inhibited cell proliferation and induced apoptosis of NSCLC cells by targeting and down-regulating SphK2, and miR-338-3p could inhibit NSCLC cells A549 and H1299 growth in vivo, suggesting a potential mechanism of NSCLC progression. Therapeutically, miR-338-3p may serve as a potential target in the treatment of human lung cancer.