Cargando…

Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats

BACKGROUND & OBJECTIVES: Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects. Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Rahul, Prasoon, Pranav, Gautam, Mayank, Ray, Subrata Basu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393085/
https://www.ncbi.nlm.nih.gov/pubmed/28361827
http://dx.doi.org/10.4103/ijmr.IJMR_1402_15
_version_ 1783229531620900864
author Kumar, Rahul
Prasoon, Pranav
Gautam, Mayank
Ray, Subrata Basu
author_facet Kumar, Rahul
Prasoon, Pranav
Gautam, Mayank
Ray, Subrata Basu
author_sort Kumar, Rahul
collection PubMed
description BACKGROUND & OBJECTIVES: Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects. Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain. This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine. METHODS: Wounds were produced under controlled conditions by an incision in the right hind paw in rats. ACPA (10, 30 or 100 μg/10 μl) was administered directly into the wound. Antinociception was evaluated by guarding, allodynia and thermal hyperalgesia. This was compared to lignocaine (30 μg/10 μl). Reversal of ACPA (30 μg)-mediated antinociceptive effect was attempted by intrawound AM251 (100 μg), a CB1r antagonist. Antinociception was also evaluated after contralateral administration of ACPA (30 μg). Primary afferent nociceptive input to the spinal cord was investigated by c-Fos expression after ACPA treatment (100 μg). RESULTS: ACPA, but not lignocaine, inhibited guarding behaviour, which was locally mediated. Conversely, lignocaine, but not ACPA, inhibited thermal hyperalgesia and mechanical allodynia. ACPA-mediated inhibitory effect was reversible and dose dependent. It was associated with a decreased c-Fos expression. Locomotor activity was unaffected following ACPA (100 μg) treatment. INTERPRETATION & CONCLUSIONS: Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions.
format Online
Article
Text
id pubmed-5393085
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-53930852017-05-02 Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats Kumar, Rahul Prasoon, Pranav Gautam, Mayank Ray, Subrata Basu Indian J Med Res Original Article BACKGROUND & OBJECTIVES: Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects. Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain. This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine. METHODS: Wounds were produced under controlled conditions by an incision in the right hind paw in rats. ACPA (10, 30 or 100 μg/10 μl) was administered directly into the wound. Antinociception was evaluated by guarding, allodynia and thermal hyperalgesia. This was compared to lignocaine (30 μg/10 μl). Reversal of ACPA (30 μg)-mediated antinociceptive effect was attempted by intrawound AM251 (100 μg), a CB1r antagonist. Antinociception was also evaluated after contralateral administration of ACPA (30 μg). Primary afferent nociceptive input to the spinal cord was investigated by c-Fos expression after ACPA treatment (100 μg). RESULTS: ACPA, but not lignocaine, inhibited guarding behaviour, which was locally mediated. Conversely, lignocaine, but not ACPA, inhibited thermal hyperalgesia and mechanical allodynia. ACPA-mediated inhibitory effect was reversible and dose dependent. It was associated with a decreased c-Fos expression. Locomotor activity was unaffected following ACPA (100 μg) treatment. INTERPRETATION & CONCLUSIONS: Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions. Medknow Publications & Media Pvt Ltd 2016-11 /pmc/articles/PMC5393085/ /pubmed/28361827 http://dx.doi.org/10.4103/ijmr.IJMR_1402_15 Text en Copyright: © 2017 Indian Journal of Medical Research http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
spellingShingle Original Article
Kumar, Rahul
Prasoon, Pranav
Gautam, Mayank
Ray, Subrata Basu
Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title_full Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title_fullStr Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title_full_unstemmed Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title_short Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
title_sort comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393085/
https://www.ncbi.nlm.nih.gov/pubmed/28361827
http://dx.doi.org/10.4103/ijmr.IJMR_1402_15
work_keys_str_mv AT kumarrahul comparativeantinociceptiveeffectofarachidonylcyclopropylamideacannabinoid1receptoragonistlignocainealocalanaestheticagentfollowingdirectintrawoundadministrationinrats
AT prasoonpranav comparativeantinociceptiveeffectofarachidonylcyclopropylamideacannabinoid1receptoragonistlignocainealocalanaestheticagentfollowingdirectintrawoundadministrationinrats
AT gautammayank comparativeantinociceptiveeffectofarachidonylcyclopropylamideacannabinoid1receptoragonistlignocainealocalanaestheticagentfollowingdirectintrawoundadministrationinrats
AT raysubratabasu comparativeantinociceptiveeffectofarachidonylcyclopropylamideacannabinoid1receptoragonistlignocainealocalanaestheticagentfollowingdirectintrawoundadministrationinrats