Cargando…

Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation

Chronic exposure of the skin to solar UV radiation induces a number of biological alterations, including a redox imbalance; therefore, there is an urgent need for skin cells protective compounds. The aim of this study was to determine the effects of natural, previously extensively examined, polyphen...

Descripción completa

Detalles Bibliográficos
Autores principales: Gęgotek, Agnieszka, Bielawska, Katarzyna, Biernacki, Michał, Dobrzyńska, Izabela, Skrzydlewska, Elżbieta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393167/
https://www.ncbi.nlm.nih.gov/pubmed/28412651
http://dx.doi.org/10.1016/j.redox.2017.04.014
Descripción
Sumario:Chronic exposure of the skin to solar UV radiation induces a number of biological alterations, including a redox imbalance; therefore, there is an urgent need for skin cells protective compounds. The aim of this study was to determine the effects of natural, previously extensively examined, polyphenol with antioxidant properties – rutin, on UV-induced skin fibroblasts membrane disruption. Accordingly, fibroblasts exposed to UVA and UVB irradiation were incubated with rutin (12 h before and/or up to 24 h after irradiation), and the structural and metabolic changes were examined. Rutin penetration through the fibroblast phospholipid bilayer was aided by UVA-induced bilitranslocase activity 2–4 h after irradiation, while UVB irradiation led to enhanced phospholipid peroxidation and higher membrane permeability to facilitate the interaction of rutin with phospholipids. Lipidomic analysis revealed that 4 h of rutin treatment also partially prevented UVA/B-induced increase in phosphatidylethanolamine and phosphatidylcholine level, as well as their membrane localization, which resulted in an enhanced zeta potential in the cells and liposomes. Moreover, rutin 2 h following irradiation, in a various degree, prevented the increased in phospholipase A2 activity and ROS generation, and partially protected against the reduction of arachidonic and linoleic acids level and the lipid peroxidation product 4-hydroxynonenal level increase. Rutin effectively prevented against decrease in glutathione peroxidase, glutathione and vitamins E and C activities/levels, particularly 2 h following UVA irradiation. In conclusion, highest skin fibroblasts membrane level of rutin occurred in 2–4 h following UVA/B-radiation results in its strongest effect on biomembrane structure and functions and cellular antioxidant system irrespective of the radiation type.