Cargando…
Burrowers from the Past: Mitochondrial Signatures of Ordovician Bivalve Infaunalization
Bivalves and gastropods are the two largest classes of extant molluscs. Despite sharing a huge number of features, they do not share a key ecological one: gastropods are essentially epibenthic, although most bivalves are infaunal. However, this is not the ancestral bivalve condition; Cambrian forms...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393379/ https://www.ncbi.nlm.nih.gov/pubmed/28338965 http://dx.doi.org/10.1093/gbe/evx051 |
Sumario: | Bivalves and gastropods are the two largest classes of extant molluscs. Despite sharing a huge number of features, they do not share a key ecological one: gastropods are essentially epibenthic, although most bivalves are infaunal. However, this is not the ancestral bivalve condition; Cambrian forms were surface crawlers and only during the Ordovician a fundamental infaunalization process took place, leading to bivalves as we currently know them. This major ecological shift is linked to the exposure to a different redox environoments (hypoxic or anoxic) and with the Lower Devonian oxygenation event. We investigated selective signatures on bivalve and gastropod mitochondrial genomes with respect to a time calibrated mitochondrial phylogeny by means of dN/dS ratios. We were able to detect 1) a major signal of directional selection between the Ordovician and the Lower Devonian for bivalve mitochondrial Complex I, and 2) an overall higher directional selective pressure on bivalve Complex V with respect to gastropods. These and other minor dN/dS patterns and timings are discussed, showing that the Ordovician infaunalization event left heavy traces in bivalve mitochondrial genomes. |
---|