Cargando…
Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification
Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available...
Autor principal: | Nam, Seungyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393410/ https://www.ncbi.nlm.nih.gov/pubmed/28388297 http://dx.doi.org/10.1089/omi.2016.0169 |
Ejemplares similares
-
Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets
por: Mochida, Keiichi, et al.
Publicado: (2018) -
Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation
por: Lee, Kyung Eun, et al.
Publicado: (2008) -
A computational framework for gene regulatory network inference that combines multiple methods and datasets
por: Gupta, Rita, et al.
Publicado: (2011) -
Identification of Flowering Regulatory Networks and Hub Genes Expressed in the Leaves of Elymus sibiricus L. Using Comparative Transcriptome Analysis
por: Zheng, Yuying, et al.
Publicado: (2022) -
Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network
por: Chen, Xi, et al.
Publicado: (2017)