Cargando…
Should multiple imputation be the method of choice for handling missing data in randomized trials?
The use of multiple imputation has increased markedly in recent years, and journal reviewers may expect to see multiple imputation used to handle missing data. However in randomized trials, where treatment group is always observed and independent of baseline covariates, other approaches may be prefe...
Autores principales: | Sullivan, Thomas R, White, Ian R, Salter, Amy B, Ryan, Philip, Lee, Katherine J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393436/ https://www.ncbi.nlm.nih.gov/pubmed/28034175 http://dx.doi.org/10.1177/0962280216683570 |
Ejemplares similares
-
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017) -
When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
por: Jakobsen, Janus Christian, et al.
Publicado: (2017) -
Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
por: Seaman, Shaun R, et al.
Publicado: (2012) -
The proportion of missing data should not be used to guide decisions on multiple imputation
por: Madley-Dowd, Paul, et al.
Publicado: (2019) -
Missing Data in Clinical Research: A Tutorial on Multiple Imputation
por: Austin, Peter C., et al.
Publicado: (2021)