Cargando…
An informatics search for the low-molecular weight chromium-binding peptide
BACKGROUND: The amino acid composition of a low molecular weight chromium binding peptide (LMWCr), isolated from bovine liver, is reportedly E:G:C:D::4:2:2:2, though its sequence has not been discovered. There is some controversy surrounding the exact biochemical forms and the action of Cr(III) in b...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539358/ https://www.ncbi.nlm.nih.gov/pubmed/15603587 http://dx.doi.org/10.1186/1472-6769-4-2 |
_version_ | 1782122088545386496 |
---|---|
author | Dinakarpandian, Deendayal Morrissette, Vincent Chaudhary, Shveta Amini, Kambiz Bennett, Brian Van Horn, J David |
author_facet | Dinakarpandian, Deendayal Morrissette, Vincent Chaudhary, Shveta Amini, Kambiz Bennett, Brian Van Horn, J David |
author_sort | Dinakarpandian, Deendayal |
collection | PubMed |
description | BACKGROUND: The amino acid composition of a low molecular weight chromium binding peptide (LMWCr), isolated from bovine liver, is reportedly E:G:C:D::4:2:2:2, though its sequence has not been discovered. There is some controversy surrounding the exact biochemical forms and the action of Cr(III) in biological systems; the topic has been the subject of many experimental reports and continues to be investigated. Clarification of Cr-protein interactions will further understanding Cr(III) biochemistry and provide a basis for novel therapies based on metallocomplexes or small molecules. RESULTS: A genomic search of the non-redundant database for all possible decapeptides of the reported composition yields three exact matches, EDGEECDCGE, DGEECDCGEE and CEGGCEEDDE. The first two sequences are found in ADAM 19 (A Disintegrin and Metalloproteinase domain 19) proteins in man and mouse; the last is found in a protein kinase in rice (Oryza sativa). A broader search for pentameric sequences (and assuming a disulfide dimer) corresponding to the stoichiometric ratio E:D:G:C::2:1:1:1, within the set of human proteins and the set of proteins in, or related to, the insulin signaling pathway, yields a match at an acidic region in the α-subunit of the insulin receptor (-EECGD-, residues 175–184). A synthetic peptide derived from this sequence binds chromium(III) and forms a metal-peptide complex that has properties matching those reported for isolated LMWCr and Cr(III)-containing peptide fractions. CONCLUSION: The search for an acidic decameric sequence indicates that LMWCr may not be a contiguous sequence. The identification of a distinct pentameric sequence in a significant insulin-signaling pathway protein suggests a possible identity for the LMWCr peptide. This identification clarifies directions for further investigation of LMWCr peptide fractions, chromium bio-coordination chemistry and a possible role in the insulin signaling pathway. Implications for models of chromium action in the insulin-signaling pathway are discussed. |
format | Text |
id | pubmed-539358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5393582005-01-01 An informatics search for the low-molecular weight chromium-binding peptide Dinakarpandian, Deendayal Morrissette, Vincent Chaudhary, Shveta Amini, Kambiz Bennett, Brian Van Horn, J David BMC Chem Biol Research Article BACKGROUND: The amino acid composition of a low molecular weight chromium binding peptide (LMWCr), isolated from bovine liver, is reportedly E:G:C:D::4:2:2:2, though its sequence has not been discovered. There is some controversy surrounding the exact biochemical forms and the action of Cr(III) in biological systems; the topic has been the subject of many experimental reports and continues to be investigated. Clarification of Cr-protein interactions will further understanding Cr(III) biochemistry and provide a basis for novel therapies based on metallocomplexes or small molecules. RESULTS: A genomic search of the non-redundant database for all possible decapeptides of the reported composition yields three exact matches, EDGEECDCGE, DGEECDCGEE and CEGGCEEDDE. The first two sequences are found in ADAM 19 (A Disintegrin and Metalloproteinase domain 19) proteins in man and mouse; the last is found in a protein kinase in rice (Oryza sativa). A broader search for pentameric sequences (and assuming a disulfide dimer) corresponding to the stoichiometric ratio E:D:G:C::2:1:1:1, within the set of human proteins and the set of proteins in, or related to, the insulin signaling pathway, yields a match at an acidic region in the α-subunit of the insulin receptor (-EECGD-, residues 175–184). A synthetic peptide derived from this sequence binds chromium(III) and forms a metal-peptide complex that has properties matching those reported for isolated LMWCr and Cr(III)-containing peptide fractions. CONCLUSION: The search for an acidic decameric sequence indicates that LMWCr may not be a contiguous sequence. The identification of a distinct pentameric sequence in a significant insulin-signaling pathway protein suggests a possible identity for the LMWCr peptide. This identification clarifies directions for further investigation of LMWCr peptide fractions, chromium bio-coordination chemistry and a possible role in the insulin signaling pathway. Implications for models of chromium action in the insulin-signaling pathway are discussed. BioMed Central 2004-12-16 /pmc/articles/PMC539358/ /pubmed/15603587 http://dx.doi.org/10.1186/1472-6769-4-2 Text en Copyright © 2004 Dinakarpandian et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dinakarpandian, Deendayal Morrissette, Vincent Chaudhary, Shveta Amini, Kambiz Bennett, Brian Van Horn, J David An informatics search for the low-molecular weight chromium-binding peptide |
title | An informatics search for the low-molecular weight chromium-binding peptide |
title_full | An informatics search for the low-molecular weight chromium-binding peptide |
title_fullStr | An informatics search for the low-molecular weight chromium-binding peptide |
title_full_unstemmed | An informatics search for the low-molecular weight chromium-binding peptide |
title_short | An informatics search for the low-molecular weight chromium-binding peptide |
title_sort | informatics search for the low-molecular weight chromium-binding peptide |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC539358/ https://www.ncbi.nlm.nih.gov/pubmed/15603587 http://dx.doi.org/10.1186/1472-6769-4-2 |
work_keys_str_mv | AT dinakarpandiandeendayal aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT morrissettevincent aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT chaudharyshveta aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT aminikambiz aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT bennettbrian aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT vanhornjdavid aninformaticssearchforthelowmolecularweightchromiumbindingpeptide AT dinakarpandiandeendayal informaticssearchforthelowmolecularweightchromiumbindingpeptide AT morrissettevincent informaticssearchforthelowmolecularweightchromiumbindingpeptide AT chaudharyshveta informaticssearchforthelowmolecularweightchromiumbindingpeptide AT aminikambiz informaticssearchforthelowmolecularweightchromiumbindingpeptide AT bennettbrian informaticssearchforthelowmolecularweightchromiumbindingpeptide AT vanhornjdavid informaticssearchforthelowmolecularweightchromiumbindingpeptide |