Cargando…
An algorithm for separation of mixed sparse and Gaussian sources
Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recovera...
Autores principales: | Akkalkotkar, Ameya, Brown, Kevin Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393591/ https://www.ncbi.nlm.nih.gov/pubmed/28414814 http://dx.doi.org/10.1371/journal.pone.0175775 |
Ejemplares similares
-
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020) -
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Distributed Recovery of a Gaussian Source in Interference with Successive Lattice Processing
por: Chapman, Christian, et al.
Publicado: (2019) -
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014) -
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020)