Cargando…

Tissue expression profiles and transcriptional regulation of elongase of very long chain fatty acid 6 in bovine mammary epithelial cells

In mammals, very long chain fatty acids (VLCFAs) perform pleiotropic roles in a wide range of biological processes, such as cell membrane formation, cell signal transduction, and endocrine regulation. Beef and milk are abundant of palmitic acid which can be further elongated into stearic acid for sy...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Si, He, Hua, Liu, Xiaolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393602/
https://www.ncbi.nlm.nih.gov/pubmed/28414811
http://dx.doi.org/10.1371/journal.pone.0175777
Descripción
Sumario:In mammals, very long chain fatty acids (VLCFAs) perform pleiotropic roles in a wide range of biological processes, such as cell membrane formation, cell signal transduction, and endocrine regulation. Beef and milk are abundant of palmitic acid which can be further elongated into stearic acid for synthesizing VLCFAs. Elongase of very long chain fatty acid 6 (ELOVL6) is a rate-limiting enzyme for converting palmitic acid to stearic acid. Consequently, investigating the tissue expression patterns and transcriptional regulation of bovine ELOVL6 can provide new insights into improving the composition of beneficial fats in cattle and expanding the knowledge of transcriptional regulation mechanism among domestic animals. In the current study, we found that bovine ELOVL6 expressed ubiquitously. Dual-luciferase reporter assay identified that the core promoter region (-130/-41 bp) was located in the second CpG island. In addition, the deletion mutation of binding sites demonstrated that sterol regulatory element binding transcription factor 1 (SREBF1) and specific protein 1 (SP1) both were able to stimulate bovine ELOVL6 promoter activity independently, while resulting the similar effect. To confirm these findings, further RNA interference assays were executed in bovine mammary epithelial cells (BMECs). In summary, these data suggest that bovine ELOVL6 expressed ubiquitously and is activated by SREBF1 and SP1, via two binding sites present in the ELOVL6 promoter region between -130 bp to -41bp.