Cargando…
A Blended Web-Based Gaming Intervention on Changes in Physical Activity for Overweight and Obese Employees: Influence and Usage in an Experimental Pilot Study
BACKGROUND: Addressing the obesity epidemic requires the development of effective interventions aimed at increasing physical activity (PA). eHealth interventions with the use of accelerometers and gaming elements, such as rewarding or social bonding, seem promising. These eHealth elements, blended w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394263/ https://www.ncbi.nlm.nih.gov/pubmed/28373157 http://dx.doi.org/10.2196/games.6421 |
Sumario: | BACKGROUND: Addressing the obesity epidemic requires the development of effective interventions aimed at increasing physical activity (PA). eHealth interventions with the use of accelerometers and gaming elements, such as rewarding or social bonding, seem promising. These eHealth elements, blended with face-to-face contacts, have the potential to help people adopt and maintain a physically active lifestyle. OBJECTIVE: The aim of this study was to assess the influence and usage of a blended Web-based gaming intervention on PA, body mass index (BMI), and waist circumference among overweight and obese employees. METHODS: In an uncontrolled before-after study, we observed 52 health care employees with BMI more than 25 kg/m(2), who were recruited via the company’s intranet and who voluntarily participated in a 23-week Web-based gaming intervention, supplemented (blended) with non-eHealth components. These non-eHealth components were an individual session with an occupational health physician involving motivational interviewing and 5 multidisciplinary group sessions. The game was played by teams in 5 time periods, aiming to gain points by being physically active, as measured by an accelerometer. Data were collected in 2014 and 2015. Primary outcome was PA, defined as length of time at MET (metabolic equivalent task) ≥3, as measured by the accelerometer during the game. Secondary outcomes were reductions in BMI and waist circumference, measured at baseline and 10 and 23 weeks after the start of the program. Gaming elements such as “compliance” with the game (ie, days of accelerometer wear), “engagement” with the game (ie, frequency of reaching a personal monthly target), and “eHealth teams” (ie, social influence of eHealth teams) were measured as potential determinants of the outcomes. Linear mixed models were used to evaluate the effects on all outcome measures. RESULTS: The mean age of participants was 48.1 years; most participants were female (42/51, 82%). The mean PA was 86 minutes per day, ranging from 6.5 to 223 minutes, which was on average 26.2 minutes per day more than self-reported PA at baseline and remained fairly constant during the game. Mean BMI was reduced by 1.87 kg/m(2) (5.6%) and waist circumference by 5.6 cm (4.8%). The univariable model showed that compliance, engagement, and eHealth team were significantly associated with more PA, which remained significant for eHealth team in the multivariable model. CONCLUSIONS: This blended Web-based gaming intervention was beneficial for overweight workers in becoming physically active above the recommended activity levels during the entire intervention period, and a favorable influence on BMI and waist circumference was observed. Promising components in the intervention, and thus targets for upscaling, are eHealth teams and engagement with the game. Broader implementation and long-term follow-up can provide insights into the sustainable effects on PA and weight loss and into who benefits the most from this approach. |
---|