Cargando…
Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent...
Autores principales: | Cruz-Roa, Angel, Gilmore, Hannah, Basavanhally, Ajay, Feldman, Michael, Ganesan, Shridar, Shih, Natalie N.C., Tomaszewski, John, González, Fabio A., Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394452/ https://www.ncbi.nlm.nih.gov/pubmed/28418027 http://dx.doi.org/10.1038/srep46450 |
Ejemplares similares
-
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
por: Cruz-Roa, Angel, et al.
Publicado: (2018) -
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX
por: Basavanhally, Ajay, et al.
Publicado: (2012) -
Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
por: Whitney, Jon, et al.
Publicado: (2018) -
Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
por: Basavanhally, Ajay, et al.
Publicado: (2015) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016)