Cargando…
Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer
Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanc...
Autores principales: | Zhang, Yucheng, Oikonomou, Anastasia, Wong, Alexander, Haider, Masoom A., Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394465/ https://www.ncbi.nlm.nih.gov/pubmed/28418006 http://dx.doi.org/10.1038/srep46349 |
Ejemplares similares
-
Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy
por: Oikonomou, Anastasia, et al.
Publicado: (2018) -
Radiomics Driven Diffusion Weighted Imaging Sensing Strategies for Zone-Level Prostate Cancer Sensing
por: Dulhanty, Chris, et al.
Publicado: (2020) -
MPCaD: a multi-scale radiomics-driven framework for automated prostate cancer localization and detection
por: Khalvati, Farzad, et al.
Publicado: (2018) -
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Khalvati, Farzad, et al.
Publicado: (2019) -
Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
por: Zhang, Yucheng, et al.
Publicado: (2021)