Cargando…

Efficient Heat Dissipation of Uncooled 400-Gbps (16×25-Gbps) Optical Transceiver Employing Multimode VCSEL and PD Arrays

An effective heat dissipation of uncooled 400-Gbps (16×25-Gbps) form-factor pluggable (CDFP) optical transceiver module employing chip-on-board multimode 25-Gbps vertical-surface-emitting-laser (VCSEL) and 25-Gbps photodiode (PD) arrays mounted on a brass metal core embedded within a printed circuit...

Descripción completa

Detalles Bibliográficos
Autores principales: Shih, Tien-Tsorng, Chi, Yu-Chieh, Wang, Ruei-Nian, Wu, Chao-Hsin, Huang, Jian-Jang, Jou, Jau-Ji, Lee, Tai-Cheng, Kuo, Hao-Chung, Lin, Gong-Ru, Cheng, Wood-Hi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394546/
https://www.ncbi.nlm.nih.gov/pubmed/28417978
http://dx.doi.org/10.1038/srep46608
Descripción
Sumario:An effective heat dissipation of uncooled 400-Gbps (16×25-Gbps) form-factor pluggable (CDFP) optical transceiver module employing chip-on-board multimode 25-Gbps vertical-surface-emitting-laser (VCSEL) and 25-Gbps photodiode (PD) arrays mounted on a brass metal core embedded within a printed circuit board (PCB) is proposed and demonstrated. This new scheme of the hollow PCB filling with thermally-dissipated brass metal core was simulated and used for high temperature and long term stability operation of the proposed 400-Gbps CDFP transceiver. During one-hour testing, a red-shift of central wavelength by 0.4-nm corresponding temperature increment of 6.7 °C was observed with the brass core assisted cooler module. Such a temperature change was significantly lower than that of 28.3 °C for the optical transceiver driven with conventional circuit board. After 100-m distance transmission over a multimode fiber (OM4), the 400-Gbps CDFP transceiver exhibited dispersion penalty of 2.6-dB, power budget of ≧ 3-dB, link loss of ≦ 0.63-dB, mask margin of 20%, and bit error rate (BER) of <10(−12) with maintained stability more than one hour. The developed 400-Gbps CDFP transceiver module employing low-power consumption VCSEL and PD arrays, effective coupling lens arrays, and well thermal-dissipation brass metal core is suitable for use in the low-cost and high-performance data center applications.