Cargando…
mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis
Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394754/ https://www.ncbi.nlm.nih.gov/pubmed/27993979 http://dx.doi.org/10.1242/dev.138271 |
_version_ | 1783229771185913856 |
---|---|
author | Foerster, Philippe Daclin, Marie Asm, Shihavuddin Faucourt, Marion Boletta, Alessandra Genovesio, Auguste Spassky, Nathalie |
author_facet | Foerster, Philippe Daclin, Marie Asm, Shihavuddin Faucourt, Marion Boletta, Alessandra Genovesio, Auguste Spassky, Nathalie |
author_sort | Foerster, Philippe |
collection | PubMed |
description | Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus. |
format | Online Article Text |
id | pubmed-5394754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-53947542017-05-02 mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis Foerster, Philippe Daclin, Marie Asm, Shihavuddin Faucourt, Marion Boletta, Alessandra Genovesio, Auguste Spassky, Nathalie Development Stem Cells and Regeneration Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus. The Company of Biologists Ltd 2017-01-15 /pmc/articles/PMC5394754/ /pubmed/27993979 http://dx.doi.org/10.1242/dev.138271 Text en © 2017. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Stem Cells and Regeneration Foerster, Philippe Daclin, Marie Asm, Shihavuddin Faucourt, Marion Boletta, Alessandra Genovesio, Auguste Spassky, Nathalie mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title_full | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title_fullStr | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title_full_unstemmed | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title_short | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
title_sort | mtorc1 signaling and primary cilia are required for brain ventricle morphogenesis |
topic | Stem Cells and Regeneration |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394754/ https://www.ncbi.nlm.nih.gov/pubmed/27993979 http://dx.doi.org/10.1242/dev.138271 |
work_keys_str_mv | AT foersterphilippe mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT daclinmarie mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT asmshihavuddin mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT faucourtmarion mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT bolettaalessandra mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT genovesioauguste mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis AT spasskynathalie mtorc1signalingandprimaryciliaarerequiredforbrainventriclemorphogenesis |