Cargando…
Cell polarity defines three distinct domains in pancreatic β-cells
The structural organisation of pancreatic β-cells in the islets of Langerhans is relatively unknown. Here, using three-dimensional (3D) two-photon, 3D confocal and 3D block-face serial electron microscopy, we demonstrate a consistent in situ polarisation of β-cells and define three distinct cell sur...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394774/ https://www.ncbi.nlm.nih.gov/pubmed/26919978 http://dx.doi.org/10.1242/jcs.185116 |
Sumario: | The structural organisation of pancreatic β-cells in the islets of Langerhans is relatively unknown. Here, using three-dimensional (3D) two-photon, 3D confocal and 3D block-face serial electron microscopy, we demonstrate a consistent in situ polarisation of β-cells and define three distinct cell surface domains. An apical domain located at the vascular apogee of β-cells, defined by the location of PAR-3 (also known as PARD3) and ZO-1 (also known as TJP1), delineates an extracellular space into which adjacent β-cells project their primary cilia. A separate lateral domain, is enriched in scribble and Dlg, and colocalises with E-cadherin and GLUT2 (also known as SLC2A2). Finally, a distinct basal domain, where the β-cells contact the islet vasculature, is enriched in synaptic scaffold proteins such as liprin. This 3D analysis of β-cells within intact islets, and the definition of distinct domains, provides new insights into understanding β-cell structure and function. |
---|