Cargando…
Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation
Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it re...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394928/ https://www.ncbi.nlm.nih.gov/pubmed/28451630 http://dx.doi.org/10.1523/ENEURO.0007-17.2017 |
_version_ | 1783229795328327680 |
---|---|
author | Teng, Santani Sommer, Verena R. Pantazis, Dimitrios Oliva, Aude |
author_facet | Teng, Santani Sommer, Verena R. Pantazis, Dimitrios Oliva, Aude |
author_sort | Teng, Santani |
collection | PubMed |
description | Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear how the brain represents reverberant spaces separately from sound sources. Here, we report separable neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily dissociable in form and time: while sound source decoding exhibited an early and transient response, the neural signature of space was sustained and independent of the original source that produced it. The reverberant space response was robust to variations in sound source, and vice versa, indicating a generalized response not tied to specific source-space combinations. These results provide the first neuromagnetic evidence for robust, dissociable auditory source and reverberant space representations in the human brain and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic auditory signals. |
format | Online Article Text |
id | pubmed-5394928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-53949282017-04-27 Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation Teng, Santani Sommer, Verena R. Pantazis, Dimitrios Oliva, Aude eNeuro New Research Perceiving the geometry of surrounding space is a multisensory process, crucial to contextualizing object perception and guiding navigation behavior. Humans can make judgments about surrounding spaces from reverberation cues, caused by sounds reflecting off multiple interior surfaces. However, it remains unclear how the brain represents reverberant spaces separately from sound sources. Here, we report separable neural signatures of auditory space and source perception during magnetoencephalography (MEG) recording as subjects listened to brief sounds convolved with monaural room impulse responses (RIRs). The decoding signature of sound sources began at 57 ms after stimulus onset and peaked at 130 ms, while space decoding started at 138 ms and peaked at 386 ms. Importantly, these neuromagnetic responses were readily dissociable in form and time: while sound source decoding exhibited an early and transient response, the neural signature of space was sustained and independent of the original source that produced it. The reverberant space response was robust to variations in sound source, and vice versa, indicating a generalized response not tied to specific source-space combinations. These results provide the first neuromagnetic evidence for robust, dissociable auditory source and reverberant space representations in the human brain and reveal the temporal dynamics of how auditory scene analysis extracts percepts from complex naturalistic auditory signals. Society for Neuroscience 2017-03-01 /pmc/articles/PMC5394928/ /pubmed/28451630 http://dx.doi.org/10.1523/ENEURO.0007-17.2017 Text en Copyright © 2017 Teng et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Teng, Santani Sommer, Verena R. Pantazis, Dimitrios Oliva, Aude Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title | Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title_full | Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title_fullStr | Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title_full_unstemmed | Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title_short | Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation |
title_sort | hearing scenes: a neuromagnetic signature of auditory source and reverberant space separation |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394928/ https://www.ncbi.nlm.nih.gov/pubmed/28451630 http://dx.doi.org/10.1523/ENEURO.0007-17.2017 |
work_keys_str_mv | AT tengsantani hearingscenesaneuromagneticsignatureofauditorysourceandreverberantspaceseparation AT sommerverenar hearingscenesaneuromagneticsignatureofauditorysourceandreverberantspaceseparation AT pantazisdimitrios hearingscenesaneuromagneticsignatureofauditorysourceandreverberantspaceseparation AT olivaaude hearingscenesaneuromagneticsignatureofauditorysourceandreverberantspaceseparation |